University of Ruhuna

Bachelor of Science General Degree Level III (Semester II) Examination - January 2022

Subject: Industrial Mathematics

Course Unit: IMT 321β (Algebraic Data Encryption & Decryption Methods)

Time: Two (02) hours

Answer All questions
Calculators provided by the university are allowed.

- 1. a) What are the meanings of following terms in Cryptography:
 - (i) Plaintext
 - (ii) Ciphertext
 - (iii) Encryption
 - (iv) Decryption

[Marks(20)]

- b) In RSA public key cryptosystem,
 - (i) Describe the steps of generating the public and private keys.
 - (ii) Let p and q be primes such that p=7 and q=17 respectively. If Alice chose the encryption key as 5 then show that Bob's private key is (119,77).
 - (iii) Alice wants to send a message P=19 to Bob. If she encrypts the message using the public key (119, 5), then determine the ciphertext.

[Marks(50)]

c) Alice and Bob agreed to use the prime number 17 and base 3 in the Diffie-Hellman key exchange. If Alice and Bob choose secret values as 5 and 12 respectively, then compute the shared secret key.

[Marks(30)]

- 2. a) (i) Write down the elements of $GF[2^3]$ in binary form.
 - (ii) Consider two polynomials $f_1(x)$ and $f_2(x)$ such that $f_1(x) = 1 + x^2 + x^3$ and $f_2(x) = 1 + x^2 + x^4$. Find the product and sum of these two polynomials over GF(2).

[Marks(30)]

b) (i) What are the meanings of reducible polynomial and irreducible polynomial over a field? Explain each term by giving an example.

1

Continued...

- (ii) Suppose that $R = \mathbb{Z}_3[x]$ and $q(x) = x^2 + 1$. Show that the ring R/qR is a field, and determine the number of elements in the field R/qR.
- (iii) Find the generators of the cyclic multiplicative group \mathbb{Z}_3^* .

[Marks(40)]

c) Determine the greatest common divisor of the following pair of polynomials over GF(11) by using the Euclidean algorithm

$$x^3 - 5x^2 + 10x - 8$$
 and $x^3 - 4x^2 + 7x - 6$.

[Marks(30)]

- 3. a) (i) Explain clearly what are the types of errors in transmission of digital information over a channel.
 - (ii) Explain the concept of Parity check error detection method.

[Marks(30)]

- b) In the Cyclic Redundancy Check (CRC) method in \mathbb{F}_2 , assume that given message for transmission is 1100 and the generator polynomial is $g(x) = x^3 + x + 1$.
 - (i) What is the transmitted message after implementing CRC encoder?
 - (ii) Write down the transmitted message in polynomial form.
 - (iii) Determine whether the received message 1100110 with the generator 1011 has detectable errors or not in CRC method. State clearly the steps you use.

[Marks(50)]

c) Determine the 8-bit check sum for the 32- bit message block given below and write down the message as it would be transmitted.

10001001 00011001 10101001 00100100

[Marks(20)]

4. a) Explain the procedure of [7,4] Hamming code creation proposed by R.W. Hamming.

[Marks(20)]

b) A [7,4] linear block code C over GF(2) is defined by the following parity check matrix,

$$H = \left(\begin{array}{cccccc} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \end{array}\right).$$

Continued...

- (i) Find the generator matrix of C.
- (ii) Construct the equations for obtaining the parity bits.
- (iii) Find the encoded codeword of the message 1010.

[Marks(45)]

c) Let some of the codewords in binary [5, 4] code are given by

$$c_0 = (00000), \quad c_1 = (10110), \quad c_2 = (01011), \quad c_3 = (11101).$$

Discuss the Linearity property of the above [5,4] code.

Calculate the rate and error correcting capacity of the code.

[Marks(35)]