UNIVERSITY OF RUHUNA

Faculty of Engineering

End-Semester 6 Examination in Engineering: January 2022

Module Number: ME 6211(NC)

Module Name: Nanotechnology

[Three Hours]

[Answer all questions, each question carries 12 marks]

- Q1. a) Bohr radius of an electron orbiting around the nucleus of an atom can be expressed as,
 - $a_0=rac{4\pi\epsilon_0\hbar^2}{mq^2}$, all terms in the equation have their usual meaning.
 - i) Deriving the above equation for Bohr radius (a_0) of an electron and express it for an exciton.

[4.0 Marks]

ii) If m_e , m_h and ϵ for InAs exciton are $0.02m_o$, $0.4m_0$ and 14.5, respectively. Calculate the physical size of a InAs nanoparticle. You may take the mass of the electron m_o as 9.11×10^{-31} .

[3.0 Marks]

- b) $\psi = B \sin\left(\frac{n\pi x}{l}\right)$ is the wave function of a two-dimensional nanoparticle in the quantum confinement region of size l, while ψ outside of this region is zero.
 - i) Show that the value of the constant B is proportional to $l^{-\frac{1}{2}}$.

[2.0 Marks]

ii) What is the expression for the energy of the n^{th} energy state and hence draw the first four energy states.

[2.0 Marks]

iii) Draw the wave function ψ and $|\psi|^2$ for the first three energy states.

[1.0 Mark]

- Q2. a) Nanomaterials and nano devises have been extensively used in a vast range of applications.
 - i) Discuss briefly the differences between "Nanoscience" and "Nanotechnology".

[2.0 Marks]

ii) Nanoparticles shows high surface area with compared to the bulk of the same material. Prove mathematically that "the surface-to-volume ratio of nanoparticles is much higher than that of a bulk particle of same volume of the identical material". Use a neat sketch also in answering.

[3.0 Marks]

iii) Explain why the melting point of metallic materials decreases when the sizes of the particles of materials decrease.

[2.0 Marks]

b) Nanomaterials can be classified into two categories as "Natural nanomaterials" and "Engineered nanomaterials". Briefly explain each of the categories and give examples for each.

[2.0 Marks]

- c) Define the followings according to the 2011 European Union (EU) recommendations.
 - i) Particle
 - ii) Aggregates
 - iii) Agglomerates

[3.0 Marks]

- Q3. a) Materials that belong to the natural world (animal and mineral), which are in existence without human modification or processing have remarkable properties because of their inherent nanostructure.
 - Briefly explain the terms "Lotus effect "and "Gecko effect" and give two potential applications of each.

[4.0 Marks]

ii) Write down Young's equation in terms of surface tensions with a neat sketch. Define all the parameters you use here.

[2.0 Marks]

iii) Discuss the differences between a hydrophilic surface and a hydrophobic surface.

[2.0 Marks]

- b) Nantoxicity is a key subject of concern in nanoscience and nanotechnology because of the increasing toxic effects of nanomaterials on the living organisms.
 - Briefly explain the reasons for nanoparticles having greater toxicity risks than larger particles of the same material.

[2.0 Marks]

ii) Discuss the disadvantages of nanotechnology other than the nanotoxicity.

[2.0 Marks]

- **Q4.** a) X-ray diffraction (XRD) is an analytical technique based on the diffraction of X-rays by matter, especially in case of crystalline materials.
 - Derive the Bragg's equation $(n\lambda = 2dsin\theta)$ for diffraction of x-rays by crystalline materials. Use a neat sketch and define all terms used in the equation.

[4.0 Marks]

ii) List the types of information that can be obtained by using X-ray diffraction (XRD) spectroscopy on a given material.

[2.0 Marks]

- b) The electron interactions on a specimen is the fundamental of the Electron Microscopy, where the energetic electrons in the microscope strike the specimen and various reactions can occur as given in Figure Q4 (b). Using a neat sketch, discuss the **formation** and **utilisation** of following electrons.
 - i) Secondary electrons.
 - ii) Backscattered electrons.

[3.0 Marks]

c) Compare the differences between the Scanning electron microscope (SEM) and the Atomic Force Microscope (AFM).

[3.0 Marks]

- Q5. a) Nanoparticle synthesis based on microemulsion technique refers to nucleation and growth of nanoparticles in liquid under controlled conditions.
 - i) Name the factors influencing the formation of a microemulsion.

[1.0 Mark]

ii) Explain the arrangement of surfactant molecules during the formation of the "Micelle" and "Reverse-micelle" in a microemulsion.

[2.0 Marks]

iii) By using appropriate sketches, describe the steps used for the synthesis of nanoparticles if the reverse-micelle technique is followed.

[3.0 Marks]

- b) Write short notes on the following.
 - i) Properties and applications of Buckminsterfullerene.
 - ii) Dip-pen nanolithography (DPN).
 - iii) Synthesis of nanoparticle by the "coprecipitation" technique.

[6.0 Marks]