Biophysical properties of voltage-gated Na⁺ channels in frog parathyroid cells and their modulation by cannabinoids

Yukio Okada^{1,*}, Kotapola G. Imendra⁴, Toshihiro Miyazaki², Hitoshi Hotokezaka³, Rie Fujiyama¹, Jorge L. Zeredo¹, Takenori Miyamoto⁵ and Kazuo Toda¹

¹Integrative Sensory Physiology, ²Oral Cytology and Cell Biology and ³Orthodontics and Biomedical Engineering, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Nagasaki 852-8588, Japan, ⁴Department of Physiology, Faculty of Medicine, University of Rhuna, Galle, Sri Lanka and ⁵Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Bunkyo-ku, Tokyo 112-8681, Japan

*Author for correspondence (e-mail: okada@net.nagasaki-u.ac.jp)

Accepted 2 November 2005

Summary

The membrane properties of isolated frog parathyroid cells were studied using perforated and conventional whole-cell patch-clamp techniques. Frog parathyroid cells displayed transient inward currents in response to depolarizing pulses from a holding potential of -84 mV. We analyzed the biophysical properties of the inward currents. The inward currents disappeared by the replacement of external Na⁺ with NMDG⁺ and were reversibly inhibited by 3 μ mol l⁻¹ TTX, indicating that the currents occur through the TTX-sensitive voltage-gated Na⁺ channels. Current density elicited by a voltage step from -84 mV to -24 mV was -80 pA pF⁻¹ in perforated mode and -55 pA pF⁻¹ in conventional mode. Current density was decreased to -12 pA pF⁻¹ by internal GTP_γS $(0.5 \text{ mmol } l^{-1})$, but not affected by internal GDP β S (1 mmol l⁻¹). The voltage of half-maximum $(V_{1/2})$

activation was -46 mV in both perforated and conventional modes. $V_{1/2}$ of inactivation was -80 mV in perforated mode and -86 mV in conventional mode. Internal GTP γ S (0.5 mmol l⁻¹) shifted the $V_{1/2}$ for activation to -36 mV and for inactivation to -98 mV. A putative endocannabinoid, 2-arachidonoylglycerol ether (2-AG ether, 50μ mol l⁻¹) and a cannabinomimetic aminoalkylindole, WIN 55,212-2 (10 μ mol l⁻¹) also greatly reduced the Na⁺ current and shifted the $V_{1/2}$ for activation and inactivation. The results suggest that the Na⁺ currents in frog parathyroid cells can be modulated by cannabinoids *via* a G protein-dependent mechanism.

Key words: parathyroid, voltage-gated Na⁺ channel, G protein, activation, inactivation, cannabinoid, frog.

Introduction

Parathyroid hormone (PTH) regulates extracellular free Ca²⁺ concentration ([Ca²⁺]_o) in cooperation with 1,25dihydroxycholecalciferol (1,25(OH)₂D₃) and calcitonin (CT). On the other hand, [Ca²⁺]_o regulates the secretion of PTH from parathyroid cells through extracellular Ca²⁺-sensing receptor (CaR; Brown et al., 1993; Hofer and Brown, 2003). High [Ca²⁺]_o inhibits and low [Ca²⁺]_o enhances PTH secretion. It is believed that extracellular Ca²⁺ inhibits the secretion of PTH *via* the intracellular free Ca²⁺ concentration ([Ca²⁺]_i). However, the molecular mechanism by which [Ca²⁺]_i regulates PTH secretion is not well elucidated.

Several electrophysiological studies have been performed in mammalian parathyroid cells. Those using classical intracellular microelectrodes indicated that rodent parathyroid cells display a deep resting potential (about -70 mV), which is depolarized by increasing [Ca²⁺]_o (Bruce and Anderson, 1979; López-Barneo and Armstrong, 1983). Later, the patch-clamp technique was applied on bovine, human and rodent

parathyroid cells (Castellano et al., 1987; Jia et al., 1988; Komwatana et al., 1994; Kanazirska et al., 1995; McHenry et al., 1998; Välimäki et al., 2003). These studies showed that parathyroid cells possess some types of K⁺ channels. Other studies suggested the presence of voltage-gated Ca²⁺ channels in bovine and goat parathyroid cells (Sand et al., 1981; Chang et al., 2001). However, voltage-gated Na⁺ channels could not be found in any of the aforementioned studies.

Ion channels are regulated by neurotransmitters and hormones *via* G protein-coupled receptors (GPCRs; Wickman and Clapham, 1995; Dascal, 2001). GPCRs dissociate heterotrimeric G proteins ($G\alpha\beta\gamma$) to $G\alpha$ -GTP and $G\beta\gamma$. Both subunits can regulate a variety of ion channels directly (*via* physical interactions between G protein subunits and the channel protein) or indirectly (*via* second messengers and protein kinases).

In the present study, we report that frog parathyroid cells possess voltage-gated Na⁺ channels and that their activity may be modulated by cannabinoids.