Parametric forms for Pythagorean Triples and Congruent numbers

Padmaprabha H.G.N.L. ${ }^{1 *}$,Shanthidevi K.C.N. ${ }^{2}$,
${ }^{1}$ Hakmana Road, Nadugala, Matara, Sri Lanka.
${ }^{2}$ Department of Mathematics, University of Ruhuna, Matara, Sri Lanka

In this paper it is obtained someparametric forms for Pythagorean Triples and Congruent numbers. First it is obtained the_positive rational solution set of the Pythagoras equation as $\left(x_{g} \frac{x^{3}-k^{x}}{2 k}, \frac{x^{m}+k^{\pi}}{2 k}\right)$ where $x_{y} k(<x)$ are positive rational numbers. Consequently, it can be obtained a parametric form for positive Pythagorean Triples as $\left(x_{3} \frac{x^{3}-1^{3}}{2 \pi} y^{2 \pi}+\mathbb{x}^{3}\right)$ where $x=\mathbb{u}^{y}$ for some positive integer $\mathbb{L}^{\mathscr{L}}$. Here \mathbb{Z} is even when x is even. A Congruent number is a positive integer that is the area of a right triangle with three rational number sides. Therefore it can be considered a right triangle which is has area $n \in \mathbb{N}$ with rational number sides $\left(x_{y} \frac{x^{3}-k^{x}}{2 k}, \frac{a^{3}+k^{3}}{2 k}\right)$ where $x_{p} k(<x)$ are positive rational numbers. Then $n=\frac{1}{2} x\left(\frac{x^{m}-k^{2}}{2 k}\right)$. Considering $x=\frac{p}{q}$ where both $p, q(q \neq 0)$ are positive integers and $\operatorname{gcd}(p, q)=1$ and using a parametric form for Pythagorean Triples $\left(x_{s} \frac{x^{3}-l^{3}}{2 \pi} y^{3} \frac{x^{3}+\mathbb{1}^{5}}{2 \pi}\right)$ it can be obtain a parametric form for Congruent numbers as integers of the form $\frac{p^{4}-\mathbb{m}^{3}}{4 \sqrt{3}}$ where \mathbb{l} is a positive factor of p.

Keywords: Pythagoras equation, Pythagorean Triples, Congruent numbers.
*Corresponding Author: mathlasitha@hotmail.com

