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Abstract
Purpose – The time series forecasting is an essential methodology which can be used for analysing
time series data in order to extract meaningful statistics based on the information obtained from past
and present. These modelling approaches are particularly complicated when the available resources
are limited as well as anomalous. The purpose of this paper is to propose a new hybrid forecasting
approach based on unbiased GM(1,1) and artificial neural network (UBGM_BPNN) to forecast time
series patterns to predict future behaviours. The empirical investigation was conducted by using daily
share prices in Colombo Stock Exchange, Sri Lanka.
Design/methodology/approach – The methodology of this study is running under three main
phases as follows. In the first phase, traditional grey operational mechanisms, namely, GM(1,1),
unbiased GM(1,1) and nonlinear grey Bernoulli model, are used. In the second phase, the new proposed
hybrid approach, namely, UBGM_BPNN was implemented successfully for forecasting short-term
predictions under high volatility. In the last stage, to pick out the most suitable model for forecasting
with a limited number of observations, three model-accuracy standards were employed. They are mean
absolute deviation, mean absolute percentage error and root-mean-square error.
Findings – The empirical results disclosed that the UNBG_BPNN model gives the minimum error
accuracies in both training and testing stages. Furthermore, results indicated that UNBG_BPNN
affords the best simulation result than other selected models.
Practical implications – The authors strongly believe that this study will provide significant
contributions to domestic and international policy makers as well as government to open up a new
direction to develop investments in the future.
Originality/value – The new proposed UBGM_BPNN hybrid forecasting methodology is better to
handle incomplete, noisy, and uncertain data in both model building and ex post testing stages.
Keywords GM(1,1), NGBM, Time series forecasting, UNBG_BPNN, Unbiased GM(1,1)
Paper type Research paper

1. Introduction
The time series forecasting is an essential tool which can be used for analysing time-
related data in order to extract meaningful statistics as well as characteristics based on
the information obtained from past and present. These modelling approaches are
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particularly complicated when limited resources are available during the underlying
data gathering process. Currently, the time series forecasting approaches are widely
used in the field of finance, applied sciences, engineering and so on for data processing,
pattern recognition, forecasting, etc. As a result of the importunacy as well as
applicability, much effort has been given by scholars over the past decades to introduce
and improve novel time series forecasting models based on the miscellaneous type of
mathematical as well as computational assumptions.

According to the literature, miscellaneous methodologies are available under
different frameworks. Basically, these existing methodologies can be listed under two
main categories: frequent domain and time domain. However, most of the forecasting
approaches have been developing in the time domain framework under different
categories such as parametric vs non-parametric, classical vs statistics and linear vs
nonlinear. Among them, stationary stochastic process-based parametric approaches
have been dominating many areas of forecasting literature. For example, the well-
balanced statistical assumptions with Box-Jenkins models, auto regressive, moving
average, autoregressive moving average, and its generalization models of
autoregressive integrated moving average (ARIMA) are significant. However, most
of these traditional approaches are more suitable and appropriate only for empirical
data studies under the normality, linearity and stationary assumptions.

Because of the poor forecasting abilities to deal with the uncertainties, fuzzy,
insufficient and high-volatility data patterns, much more effort has been expended by
scholars to develop miscellaneous mechanisms in the past decades for forecasting
time series data patterns. These include the artificial neural network (ANN) to predict
real-world data applications (Liu et al., 2013; Egrioglu et al., 2014; Claveria and Torra,
2014; Laboissiere et al., 2015; Feng et al., 2015; Adhikari, 2015; Günay, 2016);
Panapakidis and Dagoumas, 2016, the integration of fuzzy logistics techniques-based
artificial intelligence systems for forecasting (Inman et al., 2013; Gunasekaran and
Ngai, 2014; Garrido et al., 2015; Camacho-Collados and Liberatore, 2015; Agrawal
et al., 2015), Box and Jenkins statistical approaches for forecasting economic and
financial indices (Wedding and Cios, 1996; Lu and AbouRizk, 2009; Hamzaçebi et al.,
2009; Du et al., 2014; Aboagye-Sarfo et al., 2015; Aizenberg, 2016), grey system theory
(Li et al., 2012; Lei and Feng, 2012; Jin et al., 2012), and so on.

As a result of the high-volatile chaotic behaviour in real-world applications, the time
series forecasting by using separate linear and nonlinear models is always considered
to be a difficult and challenging task in the multidisciplinary systems. As a result of
these complications with regards to the traditional time series approaches, neural
network computing model-based new hybrid methodologies were introduced and
developed by McCulloch and Pitts to handle incomplete, noisy and uncertain data
(Warren and Walter, 1943; Zhang, 2003).

In this scenario, contribution by Zhang et al. is significant (Zhang, 2003). For the
very first time in literature, they have proposed a new hybrid time series forecasting
approach that combines both ARIMA and ANN mechanisms to take extra benefit of
the unique strengths of linear and nonlinear domains. Because of the high-flexibility
nonlinear modelling capability, this novel concept has been successfully applied in
various systems such as finance and economic (Khashei and Bijari, 2011; Chai and Lim,
2016; Adhikari, 2015; Lahmiri, 2016), energy (Azimi et al., 2016; Deb et al., 2015; Günay,
2016; Lou and Dong, 2015; Men et al., 2016), geological systems (Babkin et al., 2015;
Durdu, 2010; Günay, 2016; Khashei and Bijari, 2011; Wang et al., 2016), agricultural
systems (Mo et al., 2016) and other systems (Sánchez Lasheras et al., 2015;Wang et al., 2015)
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for forecasting time series data patterns; especially, this concept is more suitable
and appropriate for forecasting stock market predictions under the nonlinear
high-volatility condition.

Compared with the long-term forecasting with huge sampling frequencies, the
development of short-term forecasting has been still in their infancy. In this scenario,
grey system theory and its generalized mechanisms were introduced and propounded
in the early 1980s by a famous Chinese Scholar Deng Ju-long (Zhou and He, 2013). Since
then, this new mechanism has been applied in many fields such as industry (Bahrami
et al., 2014; Hamzacebi and Es, 2014; Lei and Feng, 2012), manufacturing (Chang et al.,
2015; Wang et al., 2013), natural sciences (Intharathirat et al., 2015), transportations
( Jiang et al., 2014), IT (Wang, 2013; Wang et al., 2014), etc.

Among the various grey methods, the GM(1,1) is suitable and widely used in the
literature. This model is basically developed to fit non-negative raw data with
exponential form without any irreducible volatility patterns (Adhikari, 2015; Kayacan
et al., 2010). Furthermore, GM(2,1), grey Verhulst (Xu et al., 2011) and nonlinear grey
Bernoulli models (NGBM) (Chen et al., 2010) have been developed for analysing the data
with oscillatory, “S” distribution, and nonlinear data patterns, respectively.

To fulfil these limitations, which were listed in the literature, this current study
developed a new hybrid forecasting methodology based on unbiased GM(1,1) and feed-
forward back propagation neural network (BPNN) to handle incomplete, noisy and
uncertain data. For comparative purpose, GM(1,1), unbiased GM(1,1), and NGBM
forecasting approaches are used. The empirical investigation of the proposed new hybrid
method is conducted by using daily share prices in the Colombo Stock Exchange (CSE),
Sri Lanka. We strongly believed that this proposed mechanism can be widely applied for
identifying the meaningful characteristics to make future adjustments in the fields of
science, finance and engineering, in both theoretical and practical perspectives.

The remainder of this study is organized as follows. In Section 2 and Section 3, the
theoretical background of grey theory and the new proposed hybrid model are
discussed, respectively. The empirical results with model comparisons are discussed in
Section 4. Section 5 gives the discussion and ends up with the conclusion, policy issues
and future work.

2. Methodology
The grey system theory was brought forward and developed by Professor Deng
Ju-long for dealing with systems with a limited number of data modelling. Currently,
grey model applications have been successfully applied in different fields for analysing
data with poor information. In the current study, we have focussed on the basic
principles and modelling process of GM(1,1), unbiased GM(1,1) and NGBM models.

2.1 Overview of grey models accumulation: GM(1,1) model
Among the miscellaneous grey mechanisms, GM(1,1) is significantly used with a
certain degree of accuracy. The modelling approach goes through the steps wisely as
follows ( Ji and Zhang, 2011; Rathnayaka et al., 2015):

• Step 1: develop a conceptual modeling language for through and concepts.

• Step 2: determine the factors.

• Step 3: examine the causal relations among the factors which have been
identified in Step 2.
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• Step 4: identify the most suitable inputs and outputs to build a dynamic model.

• Step 5: evaluate the model accuracies and make conclusions.

Based on these steps, the first-order GM(1,1) modelling algorithm goes through the
following events (Chen et al., 2010).

Let X(0)¼ (x(0)(1), x(0)(2),………, x(0)(n)) be a sequence of data, which are taken in
consecutive order at equal time intervals:

X 0ð Þ ¼ x 0ð Þ 1ð Þ; x 0ð Þ 2ð Þ; :::::::::; x 0ð Þ nð Þ9nX4
� �

Assume that X(0) is non-negative raw data series, where an original series of raw data
contains n entries.

Theorem 1. ( Julong, 1989): accumulated generating operation (AGO) generating
datum bound comprises both raw component as follows:

x 1ð Þ kð Þ ¼ x 0ð Þ kð Þþx 1ð Þ k�1ð Þ

raw part generated part

Theorem 2. ( Julong, 1989): let x(0) be a raw series:

X 0ð Þ ¼ x 0ð Þ 1ð Þ; x 0ð Þ 2ð Þ; :::::::::; x 0ð Þ nð Þ� �
y is said to be inverse accumulated generating operation (IAGO) series of x(0) where:

y ¼ IAGOx 0ð Þ

provided that:

y ¼ y 1ð Þ; y 2ð Þ; :::; y nð Þð Þ
for (k)∈y, satisfies that:

y kð Þ ¼ x 0ð Þ kð Þ�x 0ð Þ k�1ð Þ
Step 1 (Zhou and He, 2013; Zhong et al., 2011): according to Theorem 1, the AGO, which
implies adding raw data in series of X(0), is given by the following:

AGO x 0ð Þ� �
: X 1ð Þ ¼ x 1ð Þ 1ð Þ; x 1ð Þ 2ð Þ; . . .. . .. . .; x 1ð Þ nð Þ� �

where X(1) is an AGO series, which represents the first-order accumulated generating
operator, given by the following:

x 1ð Þ kð Þ ¼
Xk
m¼1

x 0ð Þ mð Þ; k ¼ 1; 2; :::; n; nX4 (1)

the X(0) is the first-order inverse accumulating generation sequence of X(1).
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Where:

X ð0ÞðkÞ ¼ X ð1ÞðkÞ � xð1Þðk�1Þ; k ¼ 2; 3;………; n:

As an initial condition, X(0)(1)¼X(0)(1).
Step 2: the mean generating operation (MEAN(X )(1))) denotes the averaging

adjoining data in mean consecutive neighbours, generating operator for X(1):

MEAN X 1ð Þ
� �

: Z 1ð Þ ¼ z 1ð Þ 1ð Þ; z 1ð Þ 2ð Þ; :::::::::; z 1ð Þ nð Þ� �
where:

Z 1ð Þ kð Þ ¼ MEAN X 1ð Þ ¼ 1
2

X 1ð Þ kð ÞþX 1ð Þ k�1ð Þ
� �

; k ¼ 2; 3; :::; n; nX4 (2)

The least-square estimator (LST) of the grey difference equation of GM(1,1) is defined
as follows in equation:

x 0ð Þ kð Þþaz 1ð Þ kð Þ ¼ b k ¼ 2; 3; :::; n (3)

where undetermined parameters a and b are called developmental coefficient and grey
input, respectively. Furthermore, the z(1)(k) is said to be mean series of x(1)(k).

Step 3: theoretically, AGO(x(0)) represent monotonic increase series, which
represents the behaviours of the first-order differential equation. Therefore, the
whitenization equation of the first-order differential equation is defined as follows:

dx̂ 1ð Þ

dt
þax̂ 1ð Þ ¼ b (4)

where both a and b are the interim parameters (developmental coefficient) of prediction
values of the grey model, respectively.

The derivatives of the function x̂ 1ð Þ at t can be defined as follows:

dx̂ 1ð Þ

dt ¼ lim
Dt-0

x̂ 1ð Þ tþDtð Þ�x̂ 1ð ÞðtÞ
Dt

If the sampling time interval Δt is unit, then we can assume that, Δt→1. So equation
can be reduced as follows:

dx̂ 1ð Þ

dt
ffix 1ð Þ kþ1ð Þ�x 1ð Þ kð Þ; k ¼ 1; 2; 3; :::; n (5)

Step 4: to estimate the developing coefficient of grey inputs a and b, the LSTs with
augmented matrix can be obtained as follows:

x 0ð Þ 2ð Þ
x 0ð Þ 3ð Þ
^

x 0ð Þ nð Þ

2
66664

3
77775 ¼

�z 1ð Þ 2ð Þ
�z 1ð Þ 3ð Þ

^

�z 1ð Þ nð Þ

1

1

^

1

2
666664

3
777775

a

b

� 	

where Yn¼BU,
â

b̂


 �
¼ ðBTBÞ�1BTY , and U ¼ a

b

� 	
:
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Where B implies the accumulated matrix and Y denotes the constant vector.
Step 5: solving the grey reflection Equation (5) from Step 3, the particular solution of

the AGO grey prediction can be approximate as follows:

x̂ 1ð Þ kþ1ð Þ ¼ x 0ð Þ 1ð Þ�b
a


 �
e�a k�1ð Þþb

a
; k ¼ 1; 2; :::; n (6)

where x 0ð Þ 1ð Þ ¼ x̂ 0ð Þ 1ð Þ.
Step 6: to obtain the predicted values of the primitive data at time (k+1), substituting

AGO (IAGO) operator from Step 2 with Theorem 2, the simulation function of x̂ 0ð Þ kþ1ð Þ
can be obtained as follows:

x̂ 0ð Þ kþ1ð Þ ¼ 1�e�að Þ x 0ð Þ 1ð Þ�b
a


 �
e�ak; k ¼ 1; 2; . . .; n (7)

where x̂ 0ð Þ 1ð Þ; x̂ 0ð Þ 2ð Þ; :::; x̂ 0ð Þ nð Þ and x̂ 0ð Þ nþ1ð Þ; x̂ 0ð Þ nþ2ð Þ; . . . are GM(1,1) fitted values
and forecasted values, respectively.

2.2 Unbiased GM(1,1) model
Based on the empirical studies which have been done based on GM(1,1), it can be
suggested that GM(1,1) has been giving high-accurate results only with raw data
sequences with slow mutations (Peirong et al., 2008; Ji et al., 2007). Under this scenario,
Ji et al.modified traditional GM(1,1) and proposed an unbiased GM(1,1) methodology to
overcome these limitations ( Ji et al., 2007, 2010).

Themodelling steps of the unbiased GM(1,1) method run as follows (Peirong et al., 2008):
Step 1: define the first-order AGO on X 0ð Þ; x 1ð Þ kð Þ ¼ Pk

m¼1 x
0ð Þ mð Þ; k ¼ 1; 2; . . .; n;

nX4.
Step 2: create a data matrix B, Y:

B ¼

�z 1ð Þ 2ð Þ
�z 1ð Þ 3ð Þ

^

�z 1ð Þ nð Þ

1

1

^

1

2
666664

3
777775 Y ¼

x 0ð Þ 2ð Þ
x 0ð Þ 3ð Þ
^

x 0ð Þ nð Þ

2
66664

3
77775

where Z 1ð Þ kð Þ ¼ 1=2ðX 1ð Þ kð ÞþX 1ð Þ k�1ð ÞÞ; k ¼ 2; 3; :::; n; nX4 and ka1
Step 3: create accumulated matrix:

â

b̂


 �
¼ BTB

� ��1
BTY

Step 4: create parameters of unbiased GM(1,1):

a0 ¼ ln
2�â
2þ â

A0 ¼ ln
2b̂

2þ â
Step 5: establish the model of raw data sequence x(0):

X̂
0ð Þ
1ð Þ ¼ X 0ð Þ 1ð Þ

X̂
0ð Þ
kð Þ ¼ A0ea

0 k�1ð Þ; k ¼ 2; 3; . . .; n nX4 and ka1
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2.3 NGBM
Among the numerous types of forecasting methodologies, the NGBM is one of the
significant methodologies that can be widely used for handling uncertain systems with
limited information. The NGBM methodology is constructed as follows:

Assume that the original non-negative original data sequence with n entries is given
by the following:

X 0ð Þ ¼ x 0ð Þ 1ð Þ; x 0ð Þ 2ð Þ; . . .. . .. . .; x 0ð Þ nð Þ9nX4
� �

:

where x(0)(k) is the value of the behaviour series at k, k¼ 1, 2,…, n.
Steps 1 and 2 are similar to GM(1,1).
Step 3: define the grey differential equation of the NGBM(1,1)
The whitenized differential equation of NGBM(1,1) has the following form:

x 0ð Þ kð Þþaz 1ð Þ kð Þ ¼ b z 1ð Þ kð Þ� g
k ¼ 2; 3; :::; n and ga (8)

dx 1ð Þ

dt
þax 1ð Þ ¼ b x 1ð Þ� �g

(9)

where x(0)(k) is a grey derivative, a and b are unknown model parameters, and Z 1ð Þ kð Þ ¼
1=2ðX 1ð Þ kð ÞþX 1ð Þ k�1ð ÞÞ; k ¼ 2; 3; . . .; n; nX4 is referred to the background values
of grey derivatives. Furthermore, γ is the power exponent which belongs to the real
values excluding 1.

Lemma 1. To choose optimal power exponent. The power exponent γ is presented
as follows:

c ¼ 1
n�2

Xn�1

k¼2

c kð Þ

where:

c kð Þ ¼
X 0ð Þ kþ1ð Þ�X 0ð Þ kð Þ
h i

:Z 1ð Þ kþ1ð Þ:Z 1ð Þ kð Þ:X 0ð Þ kð Þ� X 0ð Þ kð Þ�X 0ð Þ k�1ð Þ
h i

:Z 1ð Þ kþ1ð Þ:Z 1ð Þ kð Þ:X 0ð Þ kþ1ð Þ
n o

X 0ð Þ kþ1ð Þ
h i2

:Z 1ð Þ kð ÞX 0ð Þ kð Þ� X 0ð Þ kð Þ
h i2

:Z 1ð Þ kþ1ð ÞX 0ð Þ kþ1ð Þ
� �

k ¼ 2; 3; . . .; n�1

Step 4: adopt least-square method to estimate model parameters. The system can be
converted for the augmented matrix as follows:

x 0ð Þ 2ð Þ
x 0ð Þ 3ð Þ
^

x 0ð Þ nð Þ

2
66664

3
77775 ¼

�z 1ð Þ 2ð Þ
�z 1ð Þ 3ð Þ

^

�z 1ð Þ nð Þ

z 1ð Þ 2ð Þ� �g
z 1ð Þ 3ð Þ� �g

^

z 1ð Þ nð Þ� �g

2
666664

3
777775

a

b

� 	

where Yn¼BU,
â

b̂


 �
¼ ðBTBÞ�1BTY and U ¼ a

b

� 	
.
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Where B and Y imply the accumulated matrix and constant vector, respectively.
Step 5: model selection. Based on the dimensions of γ, the model selection criteria can

be defined as follows:

Grey model ¼
GM 1; 1ð Þ if g ¼ 0

Grey� Verhulst if g ¼ 2

NGBM if gX2

8><
>:

if γ¼ 2, it is the grey Verhulst model.
Based on the grey system methodology, the new concept was introduced by Pierre

Franois Verhulst for forecasting exponential behavioural data patterns. The new
methodology can be defined based on the following steps.

The time response sequence of grey Verhulst model may be written as follows:

x̂ 1ð Þ kþ1ð Þ ¼ 1
DþCeak

where C ¼ 1
x 1ð Þ 1ð Þ�D
h i

and D ¼ b=a

If γW2, it is the NGBM model.
According to the first-order differential conditions, the particular solution for

whitenized equation can be expressed as follows:

x̂ 1ð Þ kþ1ð Þ ¼ x 0ð Þ 1ð Þ1�n�D
� �

e�a 1�nð ÞkþD
 �1=ð1�nÞ

na1 and k ¼ 1; 2; 3; . . .

Step 6: perform the IAGO. To obtain the fitted values and predicted values, the IAGO
may be applied:

x̂ 0ð Þ kþ1ð Þ ¼ x̂ 1ð Þ kþ1ð Þ�x̂ 1ð Þ kð Þ; k ¼ 1; 2; 3; . . .; n

x̂ 1ð Þ 1ð Þ ¼ x 0ð Þ 1ð Þ
where x̂ 0ð Þ nþ1ð Þ; x̂ 0ð Þ nþ2ð Þ; x̂ 0ð Þ nþ3ð Þ; . . . are forecasted values of the grey Verhulst
model.

3. An unbiased GM(1,1)-based new hybrid approach for time series
forecasting
According to the recent literature, modified unbiased GM(1,1) (MUGM) and ANN
methodologies have been widely applied to achieve high-accuracy forecasting in linear
and nonlinear domains. However, some of these methodologies are not fully suitable
under the high-volatility irrational patterns. As a result, combined methodologies under
the linear autocorrelation structure and nonlinear weighted average component have
created high-accuracy forecasting than single model approaches. According to Zhang
(2003), if there are any outliers or multicollinearity in the data, neural network can
significantly outperform linear regression models.

The proposed methodology is considered a time series and is to be composed in two
structures as linear autocorrelation structure and nonlinear component as follows
(Rathnayaka et al., 2015; Zhang, 2003):

Yt ¼ aLtþbNt (10)
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where Lt and Nt denote the linear and nonlinear components with their coefficients of α
and β, respectively. In the first phase, MUGM approach is mainly used to analyse the
linear part of problem. Based on the residual analysis results, in the second stage,
neural network model-based approach was applied to capture the nonlinearity.

Let us assume that the residual from the linear model will contain only the nonlinear
relationships. The residuals of the linear component can be defined as follows:

et ¼ Yt� bLt (11)

where et denotes the residual of linear model at time t, and bLt presents the forecasting
value for the estimated MUGM at time t. According to the results, if we can find any
nonlinear significant pattern in the residuals, it indicates the limitations of MUGM, and
as a next step, ANN modelling approach can be applied to discover the nonlinear
relationships:

et ¼ f et�1; et�2; et�3; :::; et�nð Þþet (12)

where n represent the input nodes, and f is the nonlinear function, which is determined
based on the ANN approach. However, if the nonlinear model is not an appropriate, it
means that the error term εt is not necessarily random:

byt ¼ bLt þcNt (13)

4. Empirical results
4.1 Case study: CSE
The study was carried out on the basis of secondary data, which were obtained from
CSE, Central Bank of Sri Lanka financial reports, different types of background
readings, and other relevant sources.

This study mainly focusses on an attempt to understand the trend and cyclic
variations as well as to predict future behaviours in CSE, Sri Lanka. Daily trading data
of two main price indices, namely, All Share Price Index (ASPI) and S&P Sri Lanka 20
Price Index (SL20), from January 2011 to December 2015 were extracted and tabulated
for calculation.

As a developing market, high-volatile fluctuations with unstable patterns are a
common phenomenon in CSE. According to the run sequence patterns in ASPI and
SL20 in Figure 1, any significant correlation have not been seen between annual data
patterns during the past five years between 2011 and 2015. Furthermore, considerable
noise with significant trend and observations has been occurring during the sample
period. As a result of the disorderly patterns with linear trend behavioural patterns, it is
practically difficult to use traditional time series approaches for forecasting and
predicting market indices based on long past data.

As a result of these unpredictable irregular patterns, daily trading data during the
last two-quarter from September 2015 to December 2015 were extracted and tabulated
for our calculations. The data sample consisted of the first 85 per cent observations
during the training (in-sample or training sample) and the remaining 15 per cent of
were considered to test the generalization capabilities of the proposed models.
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4.2 Data pre-processing and stationary/non-stationary checking
Generally, two types of stationary conditions can be seen in the real-world applications.
They are as follows: non-stationary random walk with a drift and trend stationary with
intercept. So, recognizing stationary conditions based on their behaviours is significant
before doing any further analysis.

According to Table I, intercept (ASPI: 0.3335W0.05, SL20: 0.2213W0.05) and trend
components (ASPI: 0.5525W0.05, SL20: 0.3245W0.05) of the model are not significant
under the 0.05 levels.

As a next step, the corresponding autocorrelations for ASPI and SL20 are
calculated in association with the t-statistics and Ljung-Box Q-statistics and plotted
in specific lag intervals as shown in Figure 2. According to the Figure 2, ACF plots
of ASPI and SL20 depict that the sample autocorrelation values are strong, positive,
and gradually declining with respect to the lag values with 5 per cent level of
significance limits.

4.3 Grey system-based hybrid approach for stock market forecasting
In the next stage, grey operational models, namely, GM(1,1), unbiased GM(1,1) (UNBG),
NGBM and the new proposed grey hybrid methodology (UNBG_BPNN), are used for
forecasting price indices in CSE. Furthermore, three different error accuracy standards
were employed to pick out the most suitable model for forecasting with limited number
of observations. They are as follows: mean absolute deviation (MAD), mean absolute
percentage error (MAPE) and root-mean-square error (RMSE).

Measures of forecasting errors for ASPI and SL20 are shown in Tables II and III,
respectively.

In Tables II and III, both training and testing results shows that the UNBG_BPNN
model gives the minimum MAPE, MAD, and RMSE model accuracies than others.
Furthermore, results indicated that, UNBG_BPNN implies the best simulation result
than other models.

Furthermore, the error bar plots in Figure 3 also suggested that the new hybrid
UNBG_BPNN model generates high-accuracy predictions than other models.

Based on these results, we suggested that unbiased GM(1,1)-based new hybrid
model is better in both model building and ex post testing stages in the nonlinear
data patterns.

5. Concluding remarks
The time series analysis is an essential methodology which comprises the tools for
analysing the time series data to identify the characteristics for making future
ad-judgements, especially for decision making in economic and finance.

Variable Trend Coefficient SE t-statistic Prob.

ASPI D(ASPI(−1)) −0.779576 0.026127 −29.83802 0.0000
C 2.553689 2.639609 0.967449 0.3335
@TREND(1) −0.001942 0.003269 −0.594233 0.5525

SL20 D(SL20(−1)) −0.34621 0.012421 −9.89765 0.0000
C 0.97672 1.897562 0.84567 0.2213
@TREND(1) −0.000923 0.0032134 −0.23456 0.3245

Table I.
ADF test for testing
the variables
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Different type of forecasting methodologies can be seen in the literature. These include
the bilinear models, the threshold autoregressive, autoregressive conditional
heteroscedastic, etc. ( Jayathileke and Rathnayake, 2013; Rathnayaka and
Seneviratna, 2014; Rathnayaka et al., 2014). However, most of the forecasting
mechanisms suggest that linear and nonlinear separate methods are not sufficient to
forecast modern financial indices under high volatility. For example, some forecasting
models are great at short-term predictions but cannot capture the seasonality or
variability with very limited number of sample observations. Furthermore, most of
these approaches are more suitable and appropriated only for empirical data studies
under the normality, linearity and stationary assumptions.

As a result of these complications with regards to the traditional time series
approaches, neural network computing models, grey forecasting mechanisms and new
hybrid methodologies have been proposed in the recent literature to handle incomplete,
noisy and uncertain data in multidisciplinary systems.

In this study, we developed a new hybrid forecasting methodology based on
unbiased GM(1,1) and feed-forward BPNN to handle incomplete, noisy and uncertain
data in the daily price indices in CSE, Sri Lanka. The obtained results concluded that,
under the chaotic and non-stationary behavioural patterns in the short-term manner
(weekly, monthly or quarterly), this new proposed unbiased GM(1,1) hybrid approach is
more suitable in model fitting and forecasting with limited sample observations.
Furthermore, empirical results indicated more robustness with regards to the possible
structure changers in the both model fitting and forecasting with limited data patterns.

ASPI
Model accuracy GM(1,1) UNBG NGBM UNBG_BPNN

Training stage
MAPE 0.46479 0.26970 0.15265 0.03807
MAD 32.328 18.768 10.628 2.65
RMSE 39.03961 21.39443 11.67353 3.169224

Testing stage
MAPE 0.25835 0.15444 0.073154 0.016025
MAD 18.27062 10.918 5.174 1.134
RMSE 19.41791 12.83028 5.489584 1.185555

Table II.
The ASPI
forecasting accuracy

SL20
Model accuracy GM(1,1) UNBG NGBM UNBG_BPNN

Training stage
MAPE 0.1715 0.180474 0.150177 0.060261
MAD 6.99722 7.38 6.136 2.462
RMSE 9.647412 8.781783 8.330226 4.012608

Testing stage
MAPE 1.578952 0.75388 0.427885 0.128276
MAD 60.44222 28.862 16.38 4.906
RMSE 62.90244 31.79141 17.74254 5.737841

Table III.
The SL20
forecasting accuracy
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However, in the long-term manner with large data samples under the normality,
stationary and linearity conditions, the ARIMA and its generalized traditional
approaches are still more appropriate.

Finally, we strongly believed that the current study makes significant contributions
to researchers and investors toward opening up a new direction to develop new
forecasting mechanisms to predict limited data samples under the different real-world
conditions.
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