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Thraustochytrid is a promising algal oil resource with the potential to meet the demand

for docosahexaenoic acid (DHA). However, oils with high DHA content produced by

genetic modified thraustochytrids are not accepted by the food and pharmaceutical

industries in many countries. Therefore, in order to obtain non-transgenic strains with

high DHA content, a two-stage adaptive laboratory evolution (ALE) strategy was applied

to the thraustochytrid Aurantiochytrium sp. Heavy-ion irradiation technique was first used

before the ALE to increase the genetic diversity of strains, and then two-step ALE:

low temperature based ALE and ACCase inhibitor quizalofop-p-ethyl based ALE were

employed in enhancing the DHA production. Using this strategy, the end-point strain

E-81 with a DHA content 51% higher than that of the parental strain was obtained. The

performance of E-81 strain was further analyzed by component analysis and quantitative

real-time PCR. The results showed that the enhanced in lipid content was due to the

up-regulated expression of key enzymes in lipid accumulation, while the increase in DHA

content was due to the increased transcriptional levels of polyunsaturated fatty acid

synthase. This study demonstrated a non-genetic approach to enhance lipid and DHA

content in non-model industrial oleaginous strains.

Keywords: adaptive laboratory evolution, thraustochytrid Aurantiochytrium, docosahexaenoic acid, heavy-ion

irradiation, lipid accumulation

INTRODUCTION

Very long-chain polyunsaturated fatty acids (ω-3) (ω-3 PUFAs), such as eicosapentaenoic acid
(EPA, C20:5) and docosahexaenoic acid (DHA, C22:6), are considered as the essential fatty acids
in human nutrition and health (1–3). Since human are not able to synthesize EPA and DHA
de novo, therefore, adequate intakes from external sources are required (4). Currently, deep-sea
fish oil is the traditional source of PUFAs, while it is insufficient to meet the global demand for
PUFAs (5–7). Thraustochytrid Aurantiochytrium, a heterotrophic non-photosynthetic protist, is
well-known for its capacity to accumulate DHA (8). Its biomass accumulation could be more than
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100 g/L, with the total lipid over 40% of dry cell weight
(DCW) and DHA content over 40% of total fatty acids (TFAs)
(9–11). Moreover, thraustochytrids can use glucose, glycerol,
and molasses, etc., as a carbon source for fermentation, while
some species have the xylose utilization capacity (11–13). The
broad substrate utilization capacity increases the potential of
thraustochytrids as microbial cell factories for lipid biosynthesis.
Thus, oil produced from Aurantiochytrium appears to be a
sustainable resource to fill the gap between the demand and
supply of DHA (3, 14). However, its commercial exploitation
has been restricted by the substandard productivity and
high fermentation costs. Currently, several genetic engineering
strategies have been successfully performed to optimize the lipid-
accumulating capacity of Aurantiochytrium (15–18). However,
the use of genetic modified strains is prohibited in food
industry in many countries, and consumer acceptance remains
a contentious issue (19). Therefore, an adaptive laboratory
evolution (ALE) strategy has been developed in order to obtain
non-transgenic strains with high DHA content.

Microorganisms are capable of acquiring beneficial
phenotypes through random genetic mutations, thus they
can rapidly adapt to changing environments. During the
ALE process, microorganisms are repeatedly grown under
certain stress conditions to induce positive phenotypes. In
contrast to genetic modified engineering, ALE enjoys the
advantage of regulating many different genes in parallel
without the introduction of other genes (20). ALE has been
successfully applied in strains improvement, including important
model organisms, such as Saccharomyces cerevisiae (21), and
many microalgae, such as Crypthecodinium cohnii (22) and
Dunaliella salina (23). In recent years, ALE was also applied in
thraustochytrids to modify strains. Sun et al. developed a high-
oxygen based ALE strategy in thraustochytrid Schizochytrium
to improve its growth performance (24), a high salinity based
ALE method to improve its lipid production (20), and a
cooperative two-factor ALE method to enhance both the final
biomass and lipid content (25). All these studies demonstrate
ALE is a powerful method to enhance the specific properties
of thraustochytrids, however, more innovative selective
pressures still need to be identified and applied to improve the
DHA content.

Although compared with genetic engineering, ALE has some
major benefits, it also has some inherent limitations such
as the longer running time and the higher operating cost.
Mutations are considered as a basis of ALE, and the increase
of genotypic diversity can speed up evolution process (21). In a
Escherichia coli study, a combined ALE with genome shuffling
strategy successfully enhanced the desired n-butanol tolerance
(26). Similarly, the multiplexed automated genome engineering
(MAGE) technology was applied to expedite the design and

Abbreviations: DHA, docosahexaenoic acid; ALE, adaptive laboratory evolution;

PUFA, polyunsaturated fatty acids; EPA, eicosapentaenoic acid; DCW, dry cell

weight; TFAs, total fatty acids; qRT-PCR, quantitative real-time PCR; LET, linear

energy transfer; EMS, ethyl methane sulfonate; ACCase, acetyl-CoA carboxylase;

CS, citrate synthase; ICDH, isocitrate dehydrogenase; ME, malic enzyme; PKS,

polyketide synthase; UDPGP, UDP-glucose pyrophosphorylase.

evolution of organisms with new and improved properties (27).
Thus, increasing mutation rate may expedite the evolutionary
process. Considering the application area of targeted strains,
non-genetic modified methods may be more suitable for the
food industry. Heavy-ion irradiation is a novel and powerful
mutagenic technique that is capable of inducing a broad range
of mutations. Due to the higher linear energy transfer (LET), it
possess the ability to break DNA double-strand more effectively
than the other mutagenic methods; such as ethyl methane
sulfonate (EMS), X-rays or γ-rays (28). Therefore, heavy-ion
irradiation was applied before ALE to improve the diversity of
starting strains.

Since inhibiting enzyme proteins can perturb or even
inhibit metabolism, thus the selective pressure of enzyme
inhibitors can also be applied in ALE process to improve the
characteristics of organisms. Recently, an ACCase inhibitor
based ALE was successfully applied in C. cohnii to improve the
lipid accumulation (29). However, the enzyme inhibitors usually
have a significant negative effect on biomass accumulation.
For example, although the tested enzyme inhibitors could
improve lipid productivity, they all inhibit the cell growth in
Chlamydomonas reinhardtii at varying degrees (30). In any case,
enhancing lipid biosynthesis by adding the enzyme inhibitors in
the ALE process may be a useful strategy.

In this study, a non-genetic modified approach was performed
in non-model oleaginous thraustochytrid Aurantiochytrium
to obtain a mutant with high DHA yield though a two-
stage ALE strategy. We first applied heavy-ion irradiation
technique to increase the genotypic diversity of strain, and
then a two-step ALE was used to enhance the DHA content.
Finally, a E-81 strain was got with the DHA production
increases by 51% compared with that in starting strain.
This study demonstrated a non-genetic approach to efficiently
enhance lipid and DHA content in non-model industrial
oleaginous strains.

MATERIALS AND METHODS

Strains and Culture
Aurantiochytrium sp. SD116 was isolated from the mangrove and
reported in our previous study (8). It was cultured in seed liquid
medium containing 30 g/L glucose, 10 g/L yeast extract, and 10
g/L artificial sea salt. The culture was shaken at 200 rpm and
grown at 25◦C. Aurantiochytrium cells were then transferred into
fermentation medium containing 60 g/L glucose, 20 g/L yeast
extract, and 15 g/L sea salt to determine the lipid profiles.

Heavy-Ion Irradiation Mutagenesis
Aurantiochytrium cells at logarithmic phase were subjected to
heavy-ions irradiation mutagenesis. The cells were exposed to
an ion beam at the Heavy-Ion Research Facility in Lanzhou,
Institute of Modern Physics, Chinese Academy of Sciences where
the irradiation was done with different doses (0, 20, 40, 80,
120, 160, and 200 Cy) of carbon ions (12C6+). The carbon ion
energy was measured as 80 MeV/u, and the average linear energy
transfer (LET) value was 31 keVµm−1. After irradiation, the cells
were placed on seed medium plates to assess the mortality. Cell

Frontiers in Nutrition | www.frontiersin.org 2 December 2021 | Volume 8 | Article 795491

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Wang et al. ALE for High DHA Production

FIGURE 1 | Overview of the modified ALE strategy. HI, heavy-ion irradiation; CS, cold stress; QE, quizalofop-p-ethyl.

survival rate= colony counts of irradiated cells/colony counts of
irradiated cells with 0Gy × 100%. And cell mortality = 100% –
cell survival rate.

Adaptive Laboratory Evolution (ALE)
Cells were inoculated into the seed medium where the ALE
process commenced. Then the temperature of the medium
was gradually decreased from 16 to 4◦C with 4◦C per change
(Figure 1). When the cells entered into stationary phase (biomass
was almost no changed after 12 h), an aliquot of 2% (v/v)
culture was re-inoculated into a fresh medium. During the
evolution process, the growth rate of the cells was found to
be increased. When the growth rate reached the maximum,
the temperature of the medium was gradually decreased.
This experimental evolution proceeded for ∼20 cycles for
∼100 days, and the endpoint strains were named as E-
C strains.

Before the second-round ALE, the cell mortality was firstly
assessed with different concentrations (0, 5, 10, 15, 20, 25, and
30µM) of quizalofop-p-ethyl in the agar plates containing seed
medium. Cell survival rate = colony counts with different doses
of quizalofop-p-ethyl/colony counts with 0µM quizalofop-p-
ethyl × 100%. And cell mortality = 100% – cell survival rate.
Then the ACCase inhibitor quizalofop-p-ethyl was used for
the second-round ALE. The concentration of quizalofop-p-ethyl
was gradually increased from 20 to 100µM with 20µM per
change. After the growth rate reached the maximum at 100µM
quizalofop-p-ethyl, the evolution proceeded for 10 cycles for∼60
days. Then the endpoint strains were plated on seed medium
plates to select the single colonies.

Quantitative Real-Time PCR (qRT-PCR)
Analysis
Briefly, cells of Aurantiochytrium were harvested and immersed
in RNAlock Reagent (TIANGEN, China), and stored at −80◦C
until use. Total RNA was isolated using TRIzol reagent
(Invitrogen, USA) according to the manufacturer’s instructions.
RNA purity was checked using a Nano-300 spectrophotometer
(Aosheng, China), and RNA degradation and contamination was
monitored on 1% agarose gels. Synthesis of cDNA was carried
out with a Revert Aid First strand cDNA Synthesis Kit (Thermo
Scientific), and cDNA was used as the template for qRT-PCR
analysis with the primers listed in Supplementary Table 1. Actin
was used as an internal control to normalize the expression levels.
Then, the relative abundance of different mRNA molecules was
calculated based on the previous method (29).

Biomass, Glucose Consumption, Lipid,
Fatty Acid Composition Analysis, and
Component Analysis
Biomass was expressed as dry cell weight (DCW). Five milliliters
samples were harvested and freeze-dried to constant weight at
−50◦C. The glucose concentration was analyzed with a SBA-
40E Biosensor (Institute of Biology, Shandong Academy of
Sciences, China).

Total lipid was extracted using a combination solvent of
chloroform and methanol (2:1, v/v). The extracted lipids were
transferred to a pre-weighed glass tube and vacuum evaporated
under 50◦C, then the total lipid was weighed. To obtain the
fatty acid methyl esters (FAMEs), the total lipid was dissolved
in 1mL of chloroform and incubated with 2% (v/v) sulfuric

Frontiers in Nutrition | www.frontiersin.org 3 December 2021 | Volume 8 | Article 795491

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Wang et al. ALE for High DHA Production

acid/methanol at 85◦C for 2.5 h. FAMEs were determined by gas
chromatography (Agilent Technologies, 7890B) (31).

Kjeldahl nitrogen determination method was employed in
determining the protein content (32). Lyophilized samples were
hydrolyzed with 6M hydrochloric acid for 20 h, and then
amino acids were measured by the amino acid analyzer (A300;
membraPure, Germany).

The carbohydrate content was assayed following the Phenol-
Sulfuric acid method. Lyophilized samples were ground using
a mortar and then hydrolyzed in boiling water with 6M
hydrochloric acid for 0.5 h. After cooling, 10% (w/w) NaOH
was used to regulate pH = 7.0. Hydrolysate was then taken for
carbohydrate content determination by the Phenol-Sulfuric acid
method (33).

Fed-Batch Fermentation
The fed-batch fermentation experiment was performed in a 5 L
Biostat R© B plus bioreactor as described previously (34). The
cultures were grown in 2.5 L of initial fed-batch fermentation
medium at 25◦C. The aeration and stirring speed are fixed at
2 VVM and 800 rpm, respectively. The glucose concentration
was estimated with the SBA-40E Biosensor and maintained at
about 20 g/L by continuously feeding of a supplement with a
glucose concentration of 800 g/L. Moreover, 100mL of yeast
extract solution with a concentration of 150 g/L was added every
24 h, until 72 h of fermentation. The pH was maintained at 6.5 by
adding 2M NaOH. The initial fed-batch fermentation medium
contained 100 g/L glucose, 10 g/L yeast extract, 5 g/L tryptone,
5 g/L KH2PO4, 1 g/L MgSO4, and 15 g/L artificial seawater. One
milliliter of antifoam, THI R©X-298 (Thinking Finechem, Yantai,
China), was added at the beginning to control foam formation.
Samples (50mL) for off-line determination of biomass, glucose,
lipid, and fatty acid profiles were drawn at 12 h intervals until the
end of the fermentation.

Calculation and Statistical Analysis
All data are the means of three replicates and reported as the
mean ± SE. The statistical analysis was carried out by Excel,
and the significance of differences (p < 0.05 and p < 0.01) was
assessed using a t-test.

RESULTS AND DISCUSSION

Enhancement of Diversity of Starting
Strains via Heavy-Ion Irradiation
Mutations are the basis underlying ALE, thus increased mutation
rate could expedite the evolutionary process (27). Heavy-ion
irradiation is a powerful mutagenic technique that is capable
of inducing a broad range of mutations. In the present study,
heavy-ion irradiation was applied before ALE to increase the
genetic diversity of starting strains. A higher mutation rate can
be effective to a certain extent only, because it may also lead a
genetic burden. Therefore, the effect of the dosage of irradiation
on cell mortality was first investigated. When Aurantiochytrium
cells were exposed to seven heavy-ion irradiation doses (0,
20, 40, 80, 120, 160, and 200Gy), a dose-dependent mortality

was observed (Supplementary Figure 1). The mortality rate
was found to be increased approximately from 50 to 80%,
respectively, for 120 and 160Gy, which were regarded as
the best range for mutation breeding. Therefore, mutants
from 120 and 160Gy irradiation treatments were selected for
ALE experiment.

High DHA Production Strain E-81 Obtained
From ALE
It is known that PUFAs play an important role in resisting stresses
such as low temperature by increasing the fluidity of microbial
cell membranes (35, 36). According to previous reports (37, 38),
low temperatures can promote the biosynthesis of PUFAs in
thraustochytrids while decrease their growth rate. Therefore,
the first-round ALE aiming at enhancing the DHA content was
conducted under cold stress conditions. Mutant cells generated
through the irradiation treatments (120 and 160Gy) were used
as the starting strains, which were subjected to the ALE. The
temperature was decreased from 16 to 4◦C during the entire
ALE process (Figure 1). Finally, the strains with the maximum
growth rate at 4◦C were named as E-C strains. The content of
DHA in E-C strains was found to be increased by 15% compared
to that of SD116, which is 48% of its total fatty acids (TFA)
(Supplementary Figure 2). However, in terms of the total lipid
content, both E-C and SD116 strains were found to be almost
alike (Supplementary Figure 2).

Acetyl-CoA carboxylase (ACCase) is capable of catalyzing the
first bottleneck step in fatty acid biosynthesis. As reported

FIGURE 2 | Analysis of the biomass and lipid profiles in SD116 and E-81. (A)

Biomass, (B) lipid content, (C) DHA content, and (D) DHA purity in total fatty

acids (TFA). **P < 0.01 and *P < 0.05.
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FIGURE 3 | Characterization of cell growth (A) and biomass composition (B) in strains SD116 and E-81. **P < 0.01.

in previous studies, the lipid production in oleaginous
microorganisms could be increased by the enhanced activity
of ACCase (15, 39). Quizalofop-p-ethyl is an ACCase inhibitor
that usually used to enhance lipid accumulation in organisms.
Chaturvedi screened Nannochloropsis oculata mutants with
quizalofop-p-ethyl and found that the ACCase activity of
herbicide-resistance microalgae had increased ∼2-fold (40).
Another study reported that the lipid content of mutagenized
microalgae was 59% higher than wild type, indicating that
screening mutants with the herbicide quizalofop-p-ethyl
could lead to enhance lipid accumulation (41). Therefore,
quizalofop-p-ethyl was selected in the second-round of ALE.
As shown in Supplementary Figure 3, the cell mortality rate
at 30µM quizalofop-p-ethyl was almost 100%. Therefore,
20µM quizalofop-p-ethyl was used as the started concentration
for ALE process. Unlike the result of cell mortality rate, cells
could grow in the lipid medium with 30µM quizalofop-
p-ethyl. The concentration of quizalofop-p-ethyl was thus
increased gradually from 20 to 100µM during the process.
Similar to the cold stress-based ALE, the cell growth rate
reached the maximum at 100µM quizalofop-p-ethyl, and
then the streak plate method was performed to select the
single colonies.

96 single colonies were taken and then cultured in
fermentationmedium for 96 h. Lipid profiles of these strains were
screened (Supplementary Figure 4) to select the strain with the

highest DHA yield and purity. As shown in Figure 2, the biomass

yield of E-81 was equivalent to that of SD116. And the total lipid
content had reached 544 mg/g DCW, which was 13% higher than

SD116 (Figure 2B). In addition, the DHA yield and purity in E-

81 strain were increased by 41 and 25%, respectively, compared
to those of SD116 (Figures 2C,D).

All inclusive, a modified ALE strategy was designed for

Aurantiochytrium sp. SD116 to enhance the DHA purity and
yield (Figure 1): (1) heavy-ion irradiation strategy was used to
increase the diversity of starting strains; (2) cold stress based ALE

and quizalofop-p-ethyl based ALE were performed to improve
the PUFA content and total lipid production, respectively; and
finally, (3) the phenotypic stable ending strain with high DHA
yield and purity was obtained by continuously passaging.

Changes of Metabolic Network in Strain
E-81
As shown in Figure 3A, both the cell growth and glucose
consumption rates of E-81 were similar to those of SD116,
implying that the biomass productivity in E-81 was almost
comparable to that of SD116. Taking the lipid content of E-
81, which showed a significant increase (∼55% of DCW) into
account, we hypothesized that E-81 has the potential to convert
more carbon to lipid by rewiring the intracellular metabolism.
As shown in Figure 3B, the protein contents of SD116 and E-
81 were indistinguishable, though, a noticeable decrease in total
carbohydrate content was observed in E-81 compared to that
of in SD116 (∼5% of DCW). These results implied that E-81
strain could redirect the carbon allocation from carbohydrate to
lipid. To verify this hypothesis, the transcriptional levels of key
enzymes in lipid accumulation were analyzed.

The growth cycle of Aurantiochytrium sp. is characterized
by two distinct physiological stages, namely the growth phase
and the oleaginous phase. Therefore, the transcription profiles
at 48 and 72 h which represented these two phases, respectively,
were monitored. During the growth phase, the oleaginous
microorganisms convert the carbon source into cell mass, which
is rich in proteins, but poor in quantities of lipids (42). As shown
in Figure 4, the transcription levels of the genes responsible
for fatty acid biosynthesis which include FAS, OrfA, OrfB,
and OrfC (43) were not significantly varied between E-81 and
SD116 in the growth phase, though the transcription levels
of citrate synthase (CS), isocitrate dehydrogenase (ICDH), and
malic enzyme (ME) were significantly increased in E-81 strain
than the other. CS and ICDH are the key enzymes in TCA
cycle, whereas ME is the key enzyme in pyruvate malate shuttle.
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Both of these pathways are known to generate biosynthetic
precursors which are involved in the production of energy
or reducing power that are essential for the biosynthesis of

various macromolecules. Therefore, the increased transcription
levels of CS, ICDH, and ME in E-81 strain may provide more
biosynthetic precursors.

FIGURE 4 | Comparison of the transcription levels of key enzymes in fatty acid synthesis pathways of SD116 and E-81 strain. G6PDH, glucose-6-phosphate

dehydrogenase; ME, malic enzyme; CS, citrate synthase; ICDH, isocitrate dehydrogenase; ACL, ATP citrate lyase; ACC, acetyl-CoA carboxylase; FAS, fatty acid

synthase; PKS, polyketide-like polyunsaturated fatty acid synthase; OrfA, PKS subunit A; OrfB, PKS subunit B; OrfC, PKS subunit C; UDPGP, UDP-glucose

pyrophosphorylase; NSC, no significant change; GP, growth phase; OP, oleaginous phase.

FIGURE 5 | Fed-batch fermentation of SD116 and E-81 strains. (A) Growth curve; (B) total lipid yield. **P < 0.01 and *P < 0.05.
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Growth phase is followed by the lipid accumulation in the
oleaginous phase. ICDH inhibition is critical at the beginning
of lipogenesis, because the disturbance of the TCA cycle could
induce an intra-mitochondrial accumulation of citric acid which
is then excreted to the cytoplasm in exchange with malate (42).
At the oleaginous phase of the present study, the transcription
levels of CS and ME were up-regulated while no changes of
the transcription level of ICDH was observed in E-81 strain,
suggesting that more acetyl-CoA could be synthesized in E-81
strain than SD116. The accumulated pool of acetyl-CoA along
with reducing power could increase lipid andDHA productivities
(44). In the oleaginous phase, the transcription level of ACC in
E-81 strain increases more than 5-fold compared with that in
SD116, indicating ACCase inhibitor based ALE is an effective
approach to increase ACCase expression, and more carbon
resources can be used for lipid biosynthesis. There are two
competing fatty acid synthesis pathways in Aurantiochytrium
[(17); Figure 4]. Fatty acid synthase (FAS) pathway is mainly
responsible for synthesis of saturated fatty acids (SFA), and
polyketide synthase-like fatty acid (PKS) pathway which contains
three genes namely, OrfA, OrfB, and OrfC encoding for PKS
proteins synthesizes PUFA. The ratio of the transcription
levels of PKS and FAS is closely related to the fatty acid
composition. Compared with SD116, all the genes involved
in lipid synthesis, including fatty acid biosynthesis genes FAS,
OrfA, OrfB, and OrfC, and NADPH biosynthesis genes ME and
G6PDH, were significantly up-regulated in strain E-81. This may
be attributed to the increased total lipid production in strain E-
81. Furthermore, the ratio of the transcription levels of PKS and
FAS were more evidently up-regulated in E-81 strain than in
SD116 at the oleaginous phase (Supplementary Figure 5), which
explained the reason for higher PUFA content in E-81 strain.

Previous studies have showed that some microalgae could
increase lipid productivity by inhibiting the biosynthesis of
protein or starch (29, 45, 46). Taking the complexity of
carbohydrate component into account, only the transcription
level of UDP-glucose pyrophosphorylase (UDPGP), which could
produce UDP-glucose as a substrate to synthesize carbohydrate,
was detected here (Figure 4). As shown in Figure 4, the
transcription level of UDPGP in E-81 strain was up-regulated at
72 h, although no significant difference between the two strains
was found at 48 h. However, it was found that the carbohydrate
content in E-81 strain was decreased, which was inconsistent with
the increase in the transcription level of UDPGP. In previous
report showed the relative transcription ratios of PKS and FAS
genes affect the fatty acid component, and both the enhanced
transcripts of PKS and the decreased transcripts of FAS can
improve the DHA content (31, 47). Here, the transcription level
ratio of ACC and UDPGP were significantly increased, which
may direct more carbon resource into lipid biosynthesis (37).
Therefore, it was believed that although the transcription level
of UDPGP increases, E-81 reduces the carbohydrate synthesis
efficiency through other overall regulation. Based on all of these
results, it is obvious that the enhancement of fatty acid synthesis
pathway could be the main reason attributed to the increased
lipid production in strain E-81.

TABLE 1 | The analysis of lipid and fatty acid composition in SD116 and E-81 at

the end-point of fed-batch fermentation (5th day).

Fatty acids SD116 E-81 P-value

C14:0 (% TFAs*) 2.90 ± 0.03 1.60 ± 0.60 0.036

C16:0 (% TFAs) 41.2 ± 0.46 33.9 ± 2.00 0.004

C18:0 (% TFAs) 3.01 ± 0.01 1.15 ± 0.32 0.001

ARA (% TFAs) 1.55 ± 0.01 1.17 ± 0.12 0.044

EPA (% TFAs) 1.10 ± 0.01 0.81 ± 0.09 0.030

DPA (% TFAs) 9.80 ± 0.08 8.48 ± 1.50 0.203

DHA (% TFAs) 39.2 ± 0.38 52.6 ± 2.50 0.001

Palmitic acid yield (g/L) 21.0 ± 0.6 20.0 ± 0.8 0.268

DPA yield (g/L) 5.00 ± 0.1 5.00 ± 0.6 0.847

DHA yield (g/L) 20.0 ± 0.5 31.0 ± 1.4 0.001

Total PUFAs yield (g/L) 27.0 ± 0.6 37.0 ± 1.3 0.001

Total SFA yield (g/L) 37.0 ± 0.6 37.0 ± 0.6 0.671

Total lipid yield (g/L) 51.0 ± 1.3 59.0 ± 0.4 0.001

*TFAs, total fatty acids.

Fed-Batch Fermentation
The fermentation performance of E-81 strain in DHAproduction
was further investigated through a fed-batch fermentation
experiment conducted with a 5 L fermentor. The final biomass
of E-81 strain was 117 g/L, and no significant difference
of biomass was observed between the E-81 and SD116
strains (Figure 5A). Moreover, the final glucose consumption
concentration of the two strains is almost the same (315
vs. 306 g/L). However, the fatty acid composition and lipid
yield had significantly changed. As shown in Figure 5B and
Table 1, the DHA content was reached 52.5% of TFA, which
has an increase of 33.9% compared with the original strain
SD116. The lipid yields of SD116 and E-81 strain were 51.0
and 59.0 g/L, respectively, after 5 day fermentation. The
total DHA yield in E-81 strain was 31.0 g/L and found a
55% increase than that of SD116 (31.0 vs. 20.0 g/L), while
no significant variations in the total SFA and DPA yield
were recorded.

Thraustochytrids including Aurantiochytrium, could use a
variety of substrates as carbon sources. Generally, when glucose is
used as the carbon source, the DHA content of thraustochytrids
is higher, while higher lipid content can be obtained when
glycerol and acetic acid are used as the carbon source, which the
DHA content is slightly lower (48–50). Therefore, comprehensive
considerations such as substrate cost, sustainable availability,
etc. need to be considered when selecting the carbon sources.
At present, fed-batch fermentation is the main method for
algal based DHA production. Researchers try to improve the
efficiency of the fermentation process by optimizing various
parameters such as pH (49), osmotic pressure (51), and aeration
methods (9). Currently, computer simulation and computer-
aided have also been used to improve the fermentation process
(52). Through the computer-aided design, improvements to the
industrial processes could be determined without performing
excessive experiments.
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CONCLUSIONS

In order to obtain non-transgenic strains with highDHA content,
heavy-ion irradiation was first used to increase the genetic
diversity of the original strains, and then two-step ALE: low
temperature based ALE and quizalofop-p-ethyl based ALE were
performed to enhance the DHA and lipid accumulation. Using
this strategy, the DHA content of the end-point strain E-81
was 51% higher than that of the parent strain. This study
demonstrated a non-genetic approach to enhance lipid and DHA
content in non-model industrial oleaginous strains.
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