

UNIVERSITY OF RUHUNA

Faculty of Engineering

End-Semester 5 Examination in Engineering: August 2015

Module Number: EE5304

Module Name: Power Electronics

[Three Hours]

[Answer all questions, each question carries 12 marks]

- Q1 a) A basic thyristor converter circuit with RL load is shown in Figure Q1a. The ac source voltage $v_s = \sqrt{2} V_s \sin \omega t$. The delay angle of the thyristor is α (0° < α < 180°). Assume that the thyristor in the circuit has the ideal characteristics.
 - i) State the main difference between a thyristor and a diode.
 - ii) Illustrate the waveforms of v_d , i_d and the anode-cathode voltage v_T across the thyristor for one cycle of the ac source voltage for a predefined α (0 < α < 90°) value.
 - iii) Modify the circuit in Figure Q1a in order to remove the negative voltages appear across the load.
 - iv) For one cycle of ac source voltage, illustrate the waveforms of v_d and the anode-cathode voltage v_T across the thyristor in the modified circuit.
 - v) Derive an expression for the average output voltage of the circuit in a) iv).

[5 Marks]

Figure Q1a

- b) A circuit configuration for a single-phase, half-controlled converter is shown in Figure Q1b. The ac side voltage $v_s = \sqrt{2} V_s \sin \omega t$. It has a constant dc load current I_d in the dc side. The delay angle of the thyristors is α (0° < α < 180°). Assume that the diodes and the thyristors in the circuit have ideal characteristics.
 - i) Sketch the waveforms of v_d and i_s for one cycle of ac source voltage and identify the devices conducting for each intervals of v_d .
 - ii) Sketch the waveforms of voltages across thyristor T_1 and diode D_1 for one cycle of ac source voltage.

- iii) Find an expression for average output DC voltage V_d .
- iv) Can this converter operate in inverter mode? Justify your answer.
- v) Calculate the Displacement Power Factor, Power Factor and %THD (Total Harmonics Distortion) for $V_d = \frac{1}{2} V_{d0}$ where V_{d0} is dc output at $\alpha = 0$.

[7 Marks]

Figure Q1b

- Q2 a) i) Write the purpose of using dc-dc switch mode converters.
 - ii) List two applications where dc-dc switch mode converters are used.

[2 Marks]

- b) A circuit diagram of a simple step-down dc-dc converter is shown in Figure Q2a.
 - i) Identify the two main drawbacks in the circuit shown in Figure Q2.
 - ii) Sketch a power circuit diagram of the step-down dc-dc converter which eliminates the drawbacks mentioned in b) i).
 - iii) Explain briefly how the circuit in b) ii) overcomes the drawbacks.
 - iv) For the step-down dc-dc converter, show that at the edge of the continuous conduction, the average output current I_{0B} can be expressed as

$$I_{0B} = 4D (1 - D)I_{0B,min}$$

Note that all the notations have the usual meanings.

[6 Marks]

Page 2 of 6

- c) A circuit diagram of a boost converter is shown in Figure Q2b.
 - i) Show that a boost converter designed for continuous-current operation have an inductor value greater than L_{min} , which can be expressed as

$$L_{min} = \frac{D (1 - D)^2 R}{2f_s}$$

Note that all the notations have the usual meanings.

ii) Find the inductor value of the boost converter for continuous-current operation to have an output of 30 V from a 12 V input voltage. The load is a 50 Ω resistor and switching period is 40 μ s.

Figure Q2b

- Q3 a) i) Sketch the power circuit of a Buck-Boost type dc-dc converter.
 - ii) Using suitable waveform diagrams, briefly explain what is meant by continuous conduction mode and discontinuous conduction mode for a Buck-Boost type dc-dc converter.
 - iii) Why is this converter defined as Buck-Boost type? Justify your answer.
 - iv) In a Buck-Boost converter, the duty ratio is adjusted to regulate the output voltage V_0 at 15 V. The input voltage varies in a wide range from 8 V to 40 V. The minimum power output from the converter is 2 W. The switching frequency is 20 kHz. It is required that the converter always operate in a continuous-conduction mode. Stating all the assumptions, calculate the minimum value of inductance L that can be used in the converter.

[6 Marks]

- b) i) Distinguish the main difference between full-bridge dc-dc converter over, single switch dc-dc converter.
 - ii) Recognize the purpose of connecting diodes in antiparallel with the controllable switches.
 - iii) Define the blanking time associated with the full-bridge dc-dc converter.

- c) The output voltage is controlled by the thyristors with delay angles α (0 < α < π) and $\pi + \alpha$, for T_1 and T_2 respectively, in the single phase ac voltage controller shown in Figure Q5.
 - i) Sketch the output voltage v_0 , output current i_0 and voltage across the thyristor T_1 and T_2 .
 - ii) Show that the rms value of output voltage can be expressed as

$$V_{0(rms)} = V_s \sqrt{\frac{1}{\pi} \left[\pi - \alpha + \frac{\sin(2\alpha)}{2} \right]}$$

iii) Show that the supply Power Factor (PF) can be expressed as

$$PF = \sqrt{\frac{1}{\pi} \left[\pi - \alpha + \frac{\sin(2\alpha)}{2} \right]}$$

[5 Marks]

Figure Q5