\$ COSO - COSO | COSO |

UNIVERSITY OF RUHUNA

Faculty of Engineering

End-Semester 6 Examination in Engineering: December 2015

Module Number: CE6305

Module Name: Geotechnical Engineering

[Three Hours]

[Answer all questions, each question carries twelve marks]

Q1. A proposed expressway is to be constructed over a low lying area. As this area is in the flood plain and frequently subject to flooding, it was decided to raise the finished road level by 6.0 m from the existing ground level. Proposed fill consists of a 1.0 m thick gravel blanket and a 5.0 m thick well compacted lateritic soil fill. The bulk unit weights of the gravel and lateritic soil can be taken as 20 kN/m³ and 18 kN/m³, respectively.

An extensive site investigation was carried out using several bore holes and the subsoil condition was idealized based on the results obtained from the site investigation as shown in Figure Q1.1. It was revealed that soft peaty soil layer of thickness 6.0 m overlies the dense sand. Water table was found to be at the ground surface. The cross section through the natural ground and the proposed road embankment is illustrated in Figure Q1.1. The void ratio versus effective stress graph obtained through laboratory oedometer tests on undisturbed samples of peat is presented in Figure Q1.2. Coefficient of consolidation was found to be 2.0 m²/year. The bulk unit weight of soft peaty soil is found to be 14.0 kN/m³. The ground water table is found to be at the existing ground level. The unit weight of water can be taken as 9.81 kN/m³.

You may refer Table Q1.1 and Figure Q1.3 for necessary T_v values.

a) Determine whether the peaty soil is normally consolidated or over consolidated.

[1.5 Marks]

b) What would be the expected primary consolidation settlement of the peaty soil due to construction of the embankment?

[2.5 Marks]

c) If permissible settlement after surfacing of the road is 300 mm, estimate how long should the contractor wait to start the surfacing.

[3.0 Marks]

d) To monitor the actual behavior of peaty soil, a stand pipe type piezometer is installed at the 1.5 m depth of the peat layer. What would be the expected water level in the piezometer after 1 year?

[3.5 Marks]

e) Estimate the secondary consolidation settlement after one log cycle of primary consolidation ($t_s/t_p=10$). The modified secondary compression index (C'_{α}) is 0.02.

[1.5 Marks]

Q2. There is a proposal to develop 25 acres of "Muthurajawela" marshy land for a "Waste to Energy" project. However, in order to initiate the project, it is necessary to get the approval from Sri Lanka Land Reclamation and Development Corporation (SLRDC) and Central Environmental Authority CEA).

		\$

a) As you are a junior engineer in the project, what is the information expected from this site investigation. List 4 factors?

[2.0 Marks]

b) What are the sources of gathering information? List 4 factors.

[2.0 Marks]

- c) In order to find the coefficient of permeability of the silty sand which is used as drainage layer during ground improvement, the site engineer has arranged an experimental setup as shown in Figure Q2.1. Flow rate was found to be 2.0 cm³/s at the steady state condition. Cross sectional area of the soil sample is 10 cm². Porosity of the material is found to be 0.3. The unit weight of water can be taken as 9.81 kN/m³.
 - i) Assuming that there is no any head loss from X to B and Y to C, determine the coefficient of permeability of the silty sand.

[4.0 Marks]

ii) Determine the actual velocity of the flow through the soil.

[1.5 Marks]

- iii) Sketch the variation of pore water pressure along the setup from A to D [2.5 Marks]
- Q3. A cross section of a concrete dam is shown in Figure Q3.1. The up-stream water level is 5.0 m above the existing ground level whereas down-stream water level is 1.0 m above the existing ground level. There is a cutoff wall in the up-stream of the reservoir as shown in Figure Q3.1. The flow net has been drawn by trial and error manual sketching and presented in Figure Q3.1. The coefficient of permeability of foundation soil is 2.5 x 10-5 m/s.
 - a) List the factors affecting coefficient of permeability and describe 4 of them.

[2.0 Marks]

b) What is the advantage of providing a cutoff wall under the concrete dam?

[0.5 Marks]

c) If length of the concrete dam is 100 m, what would be the rate of seepage under the concrete dam?

[2.5 Marks]

d) What would be the pore water pressures at point 2 and point 6 of the concrete dam?

[4.0 Marks]

e) What would be the maximum exit gradient?

[0.5 Marks]

f) Is there any danger of piping? The unit weight of foundation soil is 18.5 kN/m^3 . The unit weight of water can be taken as 9.81 kN/m^3 .

[1.0 Marks]

- g) If porosity of the foundation soil is 0.2, estimate the seepage velocity at Point **A**. [1.5 Marks]
- Q4. A slope is supported by a 3.0 m height retaining wall as shown in Figure Q4.1. The unexpected load on the retained side can be simplified as a uniformly distributed load of intensity 20 kN/m². Soil on the retained side consists of sandy soil with friction angle of 30° and saturated unit weight of 20 kN/m³. The water table is at the ground surface. The unit weight of water can be taken as 9.81 kN/m³. To design this retaining wall, it is necessary to estimate the lateral force exerted from the retained side. In order dissipate pore water pressure behind the retaining wall, it

was decided provide weep holes at regular intervals as shown in Figure Q4.1. The Coulomb's trial wedge approach is used to estimate the lateral force.

a) Briefly explain why Rankine active pressure equation cannot be applied for this situation?

[1.0 Marks]

b) Briefly explain a method to estimate pore water force on the trial failure surface with suitable sketches.

[2.5 Marks]

c) If pore water force on the trial failure surface is 20 kN, determine the lateral force on the retaining wall by drawing a force polygon for the trial wedge shown in Figure Q4.1.

(Note: You may plot to a scale of 1 mm = 1 kN)

[5.0 Marks]

d) The client has requested not to provide weep holes in the retaining wall for the nice appearance of the surface. As you are a junior engineer in the project, would you agree for this request? Justify your answer with suitable calculations assuming that wall surface is smooth.

[2.5 Marks]

e) The client has an idea to construct a building in front of the retaining wall taking this retaining wall as one of the supporting wall. Therefore, it is not possible to provide weep holes in the retaining wall. Suggest a suitable method to improve the drainage behind the retaining wall.

[1.0 Marks]

Q5. a) In order to determine undrained shear strength parameters of a clayey soil, a junior technical officer has suggested to use Unconfined Compression (UC) test. Do you agree with this decision? Justify your answer with suitable sketches.

[2.0 Marks]

b) What are the main drawbacks of the direct shear test over the triaxial test? Briefly explain 2 factors.

[1.0 Marks]

c) In order to find the shear strength parameters of a silty clayey soil, three specimens of the soil were subjected to Consolidated Undrained (CU) triaxial test. Deviator stress, cell pressure and pore water pressures at failure are given in Table Q5.1. Draw Mohr circles and determine the shear strength parameters in terms of total stress and effective stress.

[5.0 Marks]

- d) A Consolidated Drained (CD) triaxial test was conducted on a sandy soil sample. At failure, deviator stress was 300 kPa when cell pressure is around $100 \, \text{kN/m}^2$.
 - i) Draw a Mohr circle and determine the shear strength parameters.

[2.0 Marks]

ii) Draw the failure plane and determine the angle that the failure plane makes with the major principal plane.

[1.0 Marks]

iii) Using the Mohr circle, determine the normal stress and shear stress on the failure plane.

[1.0 Marks]

Dense sand

Figure Q1.1 Cross section of earth embankment

Figure Q1.2 Void ratio versus effective stress graph

Table Q1.1 Variation of T_v with U

0 0 51 0.204 1 0.00008 52 0.212 2 0.0003 53 0.221 3 0.00071 54 0.230 4 0.00126 55 0.239 5 0.00196 56 0.248 6 0.00283 57 0.257 7 0.00385 58 0.267 8 0.00502 59 0.276 9 0.00636 60 0.286 10 0.00785 61 0.297 11 0.0095 62 0.307 12 0.0113 63 0.318 13 0.0133 64 0.329 14 0.0154 65 0.304 15 0.0177 66 0.352 16 0.0201 67 0.364 17 0.0227 68 0.377 18 0.0227 68 0.377 18 0.0254 69 0.390 19 0.0283 70 0.403 20 0.0314 71 0.417 21 0.0346 72 0.431 22 0.0380 73 0.446 23 0.0415 74 0.461 24 0.0452 75 0.477 25 0.0491 76 0.493 26 0.0531 77 0.511 27 0.0572 78 0.529 28 0.0615 79 0.547 29 0.0660 80 0.567 30 0.0707 81 0.588 31 0.0754 82 0.610 32 0.0803 83 0.633 33 0.0855 84 0.658 34 0.0907 85 0.684 0.0907 85 0.684 0.0907 85 0.684 0.0907 85 0.684 0.0907 85 0.684 0.0907 85 0.684 0.0907 85 0.684 0.0907 85 0.684 0.0126 91 0.891 40 0.126 91 0.891 41 0.132 92 0.938 43 0.145 94 1.055 44 0.152 95 1.129 45 0.159 96 1.219 46 0.166 97 1.336 47 0.173 98 1.500 48 0.181 99 1.781	J.(%) .		, · . · . U-(%) - :	. T
1 0.00008 52 0.212 2 0.0003 53 0.221 3 0.00071 54 0.230 4 0.00126 55 0.239 5 0.00196 56 0.248 6 0.00283 57 0.257 7 0.00385 58 0.267 8 0.00502 59 0.276 9 0.00636 60 0.286 10 0.00785 61 0.297 11 0.0095 62 0.307 12 0.0113 63 0.318 13 0.0133 64 0.329 14 0.0154 65 0.352 16 0.0201 67 0.364 17 0.0227 68 0.377 18 0.0254 69 0.390 19 0.0223 70 0.403 20 0.0314 71 0.417 21	0	0	51	0.204
2 0.0003 53 0.221 3 0.00071 54 0.230 4 0.00126 55 0.239 5 0.00196 56 0.248 6 0.00283 57 0.257 7 0.00385 58 0.267 8 0.00502 59 0.276 9 0.00636 60 0.286 10 0.00785 61 0.297 11 0.0095 62 0.307 12 0.0113 63 0.318 13 0.0133 64 0.329 14 0.0154 65 0.304 15 0.0177 66 0.352 16 0.0201 67 0.364 17 0.0227 68 0.377 18 0.0227 68 0.377 18 0.0254 69 0.390 19 0.0283 70 0.403 20 0.0314 71 0.417 21 0.0346 72 0.431 22 0.0380 73 0.446 23 0.0415 74 0.461 24 0.0452 75 0.477 25 0.0491 76 0.493 26 0.0531 77 0.511 27 0.0572 78 0.529 28 0.0615 79 0.547 29 0.0660 80 0.567 30 0.0707 81 0.588 31 0.0754 82 0.610 32 0.0803 83 0.633 33 0.0855 84 0.658 34 0.0907 85 0.684 35 0.0962 86 0.712 36 0.102 87 0.742 37 0.107 88 0.774 38 0.113 89 0.809 39 0.119 90 0.848 40 0.126 91 0.891 41 0.132 92 0.938 43 0.113 89 0.809 39 0.119 90 0.848 40 0.126 91 0.891 41 0.132 92 0.938 43 0.115 94 1.055 44 0.166 97 1.336 47 0.173 98 1.500 48 0.181 99 1.781				0.212
3 0.00071 54 0.230 4 0.00126 55 0.239 5 0.00196 56 0.248 6 0.00196 56 0.248 6 0.00283 57 0.257 7 0.00385 58 0.267 8 0.00502 59 0.276 9 0.00636 60 0.286 10 0.00785 61 0.297 11 0.0095 62 0.307 12 0.0113 63 0.318 13 0.0133 64 0.329 14 0.0154 65 0.304 15 0.0177 66 0.352 16 0.0201 67 0.364 17 0.0227 68 0.377 18 0.0227 68 0.377 18 0.0254 69 0.390 19 0.0283 70 0.403 20 0.0314 71 0.417 21 0.0346 72 0.431 22 0.0380 73 0.4466 23 0.0415 74 0.461 24 0.0452 75 0.477 0.511 27 0.0572 78 0.0521 77 0.511 27 0.0572 78 0.0521 79 0.547 29 0.0660 80 0.567 30 0.0707 81 0.588 31 0.0754 82 0.610 32 0.0855 84 0.0615 79 0.547 29 0.0660 80 0.567 30 0.0754 82 0.610 32 0.0855 84 0.0907 85 0.684 35 0.0962 86 0.712 36 0.102 87 0.742 37 0.107 88 0.113 89 0.809 39 0.119 90 0.848 40 0.126 91 0.891 41 0.132 92 0.938 43 0.145 94 1.055 44 0.152 95 1.129 45 0.159 96 1.219 46 0.166 97 1.336 48 0.181 99 1.781 49 0.188 100 ∞				0.221
4 0.00126 55 0.239 5 0.00196 56 0.248 6 0.00283 57 0.257 7 0.00385 58 0.267 8 0.00502 59 0.276 9 0.00636 60 0.286 10 0.00785 61 0.297 11 0.0095 62 0.307 12 0.0113 63 0.318 13 0.0133 64 0.329 14 0.0154 65 0.304 15 0.0177 66 0.352 16 0.0201 67 0.364 17 0.0227 68 0.377 18 0.0254 69 0.390 19 0.0283 70 0.403 20 0.0314 71 0.417 21 0.0346 72 0.431 22 0.0380 73 0.446 23				0.230
5 0.00196 56 0.248 6 0.00283 57 0.257 7 0.00385 58 0.267 8 0.00502 59 0.276 9 0.00636 60 0.286 10 0.00785 61 0.297 11 0.0095 62 0.307 12 0.0113 63 0.318 13 0.0133 64 0.329 14 0.0154 65 0.304 15 0.0177 66 0.352 16 0.0201 67 0.364 17 0.0227 68 0.377 18 0.0254 69 0.390 19 0.0283 70 0.403 20 0.0314 71 0.417 21 0.0346 72 0.431 22 0.0380 73 0.446 23 0.0415 74 0.461 24				
6 0.00283 57 0.257 7 0.00385 58 0.267 8 0.005002 59 0.276 9 0.00636 60 0.286 10 0.00785 61 0.297 11 0.0095 62 0.307 12 0.0113 63 0.318 13 0.0133 64 0.329 14 0.0154 65 0.304 15 0.0177 66 0.352 16 0.0201 67 0.364 17 0.0227 68 0.377 18 0.0254 69 0.390 19 0.0283 70 0.403 20 0.0314 71 0.417 21 0.0346 72 0.431 22 0.0380 73 0.446 23 0.0415 74 0.461 24 0.0452 75 0.477 25 0.0491 76 0.493 26 0.0531 77 0.511 27 0.0572 78 0.529 28 0.0615 79 0.547 29 0.0660 80 0.567 30 0.0707 81 0.588 31 0.0754 82 0.610 32 0.0803 83 0.633 33 0.0855 84 0.658 34 0.0907 85 0.684 35 0.0962 86 0.712 36 0.102 87 0.742 37 0.107 88 0.774 38 0.113 89 0.809 39 0.119 90 0.848 40 0.126 91 0.891 41 0.132 92 0.938 43 0.145 94 1.055 44 0.152 95 1.129 45 0.166 97 1.336 47 0.173 98 1.500 48 0.181 99 0.781				•
7 0.00385 58 0.267 8 0.00502 59 0.276 9 0.00636 60 0.286 10 0.00785 61 0.297 11 0.0095 62 0.307 12 0.0113 63 0.318 13 0.0133 64 0.329 14 0.0154 65 0.304 15 0.0177 66 0.352 16 0.0201 67 0.364 17 0.0227 68 0.377 18 0.0254 69 0.390 19 0.0283 70 0.403 20 0.314 71 0.417 21 0.0346 72 0.431 22 0.0380 73 0.446 23 0.0415 74 0.461 24 0.0452 75 0.477 25 0.0491 76 0.493 26				1
8				3
9 0.00636 60 0.286 10 0.00785 61 0.297 11 0.0095 62 0.307 12 0.0113 63 0.318 13 0.0133 64 0.329 14 0.0154 65 0.304 15 0.0177 66 0.352 16 0.0201 67 0.364 17 0.0227 68 0.377 18 0.0254 69 0.390 19 0.0283 70 0.403 20 0.0314 71 0.417 21 0.0346 72 0.431 22 0.0380 73 0.446 23 0.0415 74 0.461 24 0.0452 75 0.477 25 0.0491 76 0.493 26 0.0531 77 0.511 27 0.0572 78 0.529 28 0.0615 79 0.547 29 0.0660 80 0.567 30 0.0707 81 0.588 31 0.0754 82 0.610 32 0.0803 83 0.633 33 0.0855 84 0.658 34 0.0907 85 0.684 35 0.0962 86 0.712 36 0.102 87 0.742 37 0.107 88 0.774 38 0.113 89 0.809 39 0.119 90 0.848 40 0.126 91 0.891 41 0.132 92 0.938 43 0.145 94 1.055 44 0.152 95 1.129 45 0.159 96 1.219 46 0.166 97 1.336 47 0.173 98 1.500 48 0.181 99 0.881				0.276
10 0.00785 61 0.297 11 0.0095 62 0.307 12 0.0113 63 0.318 13 0.0133 64 0.329 14 0.0154 65 0.304 15 0.0177 66 0.352 16 0.0201 67 0.364 17 0.0227 68 0.377 18 0.0254 69 0.390 19 0.0283 70 0.403 20 0.0314 71 0.417 21 0.0346 72 0.431 22 0.0380 73 0.446 23 0.0415 74 0.461 24 0.0452 75 0.477 25 0.0491 76 0.493 26 0.0531 77 0.511 27 0.0572 78 0.529 28 0.0615 79 0.547 29 0.0660 80 0.567 30 0.0707 81 0.588 31 0.0754 82 0.610 32 0.0803 83 0.633 33 0.0855 84 0.658 34 0.0907 85 0.684 35 0.0962 86 0.712 36 0.102 87 0.742 37 0.107 88 0.774 38 0.113 89 0.809 39 0.119 90 0.848 40 0.126 91 0.891 41 0.132 92 0.938 42 0.138 93 0.993 43 0.145 94 1.055 44 0.152 95 1.129 45 0.166 97 1.336 47 0.173 98 1.500 48 0.181 99 1.781				
11 0.0095 62 0.307 12 0.0113 63 0.318 13 0.0133 64 0.329 14 0.0154 65 0.304 15 0.0177 66 0.352 16 0.0201 67 0.364 17 0.0227 68 0.377 18 0.0254 69 0.390 19 0.0283 70 0.403 20 0.0314 71 0.417 21 0.0346 72 0.431 22 0.0380 73 0.446 23 0.0415 74 0.461 24 0.0452 75 0.477 25 0.0491 76 0.493 26 0.0531 77 0.511 27 0.0572 78 0.529 28 0.0615 79 0.547 29 0.0660 80 0.588 31 0.0754 82 0.610 32 0.0803 83	1			
12	1			1
13 0.0133 64 0.329 14 0.0154 65 0.304 15 0.0177 66 0.352 16 0.0201 67 0.364 17 0.0227 68 0.377 18 0.0254 69 0.390 19 0.0283 70 0.403 20 0.0314 71 0.417 21 0.0346 72 0.431 22 0.0380 73 0.446 23 0.0415 74 0.461 24 0.0452 75 0.477 25 0.0491 76 0.493 26 0.0531 77 0.511 27 0.0572 78 0.529 28 0.0615 79 0.547 29 0.0660 80 0.567 30 0.0754 82 0.610 32 0.0803 83 0.633 33 0.0855 84 0.658 34 0.0907 85	1			*
14	ţ			
15	ł			1
16	1			1
17 0.0227 68 0.377 18 0.0254 69 0.390 19 0.0283 70 0.403 20 0.0314 71 0.417 21 0.0346 72 0.431 22 0.0380 73 0.446 23 0.0415 74 0.461 24 0.0452 75 0.477 25 0.0491 76 0.493 26 0.0531 77 0.511 27 0.0572 78 0.529 28 0.0615 79 0.547 29 0.0660 80 0.567 30 0.0707 81 0.588 31 0.0754 82 0.610 32 0.0803 83 0.633 33 0.0855 84 0.658 34 0.0907 85 0.684 35 0.0962 86 0.712 36 0.102 87 0.742 37 0.107 88 <t< td=""><td>\$</td><td></td><td></td><td></td></t<>	\$			
18 0.0254 69 0.390 19 0.0283 70 0.403 20 0.0314 71 0.417 21 0.0346 72 0.431 22 0.0380 73 0.446 23 0.0415 74 0.461 24 0.0452 75 0.477 25 0.0491 76 0.493 26 0.0531 77 0.511 27 0.0572 78 0.529 28 0.0615 79 0.547 29 0.0660 80 0.567 30 0.0707 81 0.588 31 0.0754 82 0.610 32 0.0803 83 0.633 33 3 0.0855 84 0.658 34 0.0907 85 0.684 35 0.0962 86 0.712 36 0.102 87 0.742 37 0.107 88 0.774 38 0.113	1			1
19	1			· · ·
20 0.0314 71 0.417 21 0.0346 72 0.431 22 0.0380 73 0.446 23 0.0415 74 0.461 24 0.0452 75 0.477 25 0.0491 76 0.493 26 0.0531 77 0.511 27 0.0572 78 0.529 28 0.0615 79 0.547 29 0.0660 80 0.567 30 0.0707 81 0.588 31 0.0754 82 0.610 32 0.0803 83 0.633 33 0.0855 84 0.658 34 0.0907 85 0.684 35 0.0962 86 0.712 36 0.102 87 0.742 37 0.107 88 0.774 38 0.113 89 0.809 39 0.119 90 0.848 40 0.126 91 0.891 41 0.132 92 0.938 42 0.138 93 0.993 43 0.145 94 1.055 44 0.152 95 1.129 45 0.166 97 1.336 47 0.173 98 1.500 48 0.181 99 1.781	1			
21 0.0346 72 0.431 22 0.0380 73 0.446 23 0.0415 74 0.461 24 0.0452 75 0.477 25 0.0491 76 0.493 26 0.0531 77 0.511 27 0.0572 78 0.529 28 0.0615 79 0.547 29 0.0660 80 0.567 30 0.0707 81 0.588 31 0.0754 82 0.610 32 0.0803 83 0.633 33 0.0855 84 0.658 34 0.0907 85 0.684 35 0.0962 86 0.712 36 0.102 87 0.742 37 0.107 88 0.774 38 0.113 89 0.809 39 0.119 90 0.848 40 0.126 91 0.891 41 0.132 92 0.	1			
22 0.0380 73 0.446 23 0.0415 74 0.461 24 0.0452 75 0.477 25 0.0491 76 0.493 26 0.0531 77 0.511 27 0.0572 78 0.529 28 0.0615 79 0.547 29 0.0660 80 0.567 30 0.0707 81 0.588 31 0.0754 82 0.610 32 0.0803 83 0.633 33 0.0855 84 0.658 34 0.0907 85 0.684 35 0.0962 86 0.712 36 0.102 87 0.742 37 0.107 88 0.774 38 0.113 89 0.809 39 0.119 90 0.848 40 0.126 91 0.891 41 0.132 92 0.938 42 0.138 93 0.993 43 0.145 94 1.055 44 0.152 95 1.129 45 0.159 96 1.219 46 0.166 97 1.336 47 0.173 98 1.500 48 0.181 99 1.781	1 ' '			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i			1
24 0.0452 75 0.477 25 0.0491 76 0.493 26 0.0531 77 0.511 27 0.0572 78 0.529 28 0.0615 79 0.547 29 0.0660 80 0.567 30 0.0707 81 0.588 31 0.0754 82 0.610 32 0.0803 83 0.633 33 0.0855 84 0.658 34 0.0907 85 0.684 35 0.0962 86 0.712 36 0.102 87 0.742 37 0.107 88 0.774 38 0.113 89 0.809 39 0.119 90 0.848 40 0.126 91 0.891 41 0.132 92 0.938 42 0.138 93 0.993 43 0.145 94 1.055 44 0.152 95 1.129	ì			
25 0.0491 76 0.493 26 0.0531 77 0.511 27 0.0572 78 0.529 28 0.0615 79 0.547 29 0.0660 80 0.567 30 0.0707 81 0.588 31 0.0754 82 0.610 32 0.0803 83 0.633 33 0.0855 84 0.658 34 0.0907 85 0.684 35 0.0962 86 0.712 36 0.102 87 0.742 37 0.107 88 0.774 38 0.113 89 0.809 39 0.119 90 0.848 40 0.126 91 0.891 41 0.132 92 0.938 42 0.138 93 0.993 43 0.145 94 1.055 44	1			•
26 0.0531 77 0.511 27 0.0572 78 0.529 28 0.0615 79 0.547 29 0.0660 80 0.567 30 0.0707 81 0.588 31 0.0754 82 0.610 32 0.0803 83 0.633 33 0.0855 84 0.658 34 0.0907 85 0.684 35 0.0962 86 0.712 36 0.102 87 0.742 37 0.107 88 0.712 36 0.102 87 0.742 37 0.107 88 0.774 38 0.113 89 0.809 39 0.119 90 0.848 40 0.126 91 0.891 41 0.132 92 0.938 42 0.138 93 0.993 43 0.145 94 1.055 44 0.152 95 1.129 45 0.159 96 1.219 46 0.166 97 1.336 47 0.173 98 1.500 48 0.181 99 1.781				
27 0.0572 78 0.529 28 0.0615 79 0.547 29 0.0660 80 0.567 30 0.0707 81 0.588 31 0.0754 82 0.610 32 0.0803 83 0.633 33 0.0855 84 0.658 34 0.0907 85 0.684 35 0.0962 86 0.712 36 0.102 87 0.742 37 0.107 88 0.774 38 0.113 89 0.809 39 0.119 90 0.848 40 0.126 91 0.891 41 0.132 92 0.938 42 0.138 93 0.993 43 0.145 94 1.055 44 0.152 95 1.129 45 0.159 96 1.219 46 <t< td=""><td>1</td><td></td><td></td><td>1</td></t<>	1			1
28	1			ļ
29 0.0660 80 0.567 30 0.0707 81 0.588 31 0.0754 82 0.610 32 0.0803 83 0.633 33 0.0855 84 0.658 34 0.0907 85 0.684 35 0.0962 86 0.712 36 0.102 87 0.742 37 0.107 88 0.774 38 0.113 89 0.809 39 0.119 90 0.848 40 0.126 91 0.891 41 0.132 92 0.938 42 0.138 93 0.993 43 0.145 94 1.055 44 0.152 95 1.129 45 0.159 96 1.219 46 0.166 97 1.336 47 0.173 98 1.500 48 0.181 99 1.781 49 0.188 100 ∞	1			
30 0.0707 81 0.588 31 0.0754 82 0.610 32 0.0803 83 0.633 33 0.0855 84 0.658 34 0.0907 85 0.684 35 0.0962 86 0.712 36 0.102 87 0.742 37 0.107 88 0.774 38 0.113 89 0.809 39 0.119 90 0.848 40 0.126 91 0.891 41 0.132 92 0.938 42 0.138 93 0.993 43 0.145 94 1.055 44 0.152 95 1.129 45 0.159 96 1.219 46 0.166 97 1.336 47 0.173 98 1.500 48 0.181 99 1.781 49 0.188 100 ∞	1			1
31 0.0754 82 0.610 32 0.0803 83 0.633 33 0.0855 84 0.658 34 0.0907 85 0.684 35 0.0962 86 0.712 36 0.102 87 0.742 37 0.107 88 0.774 38 0.113 89 0.809 39 0.119 90 0.848 40 0.126 91 0.891 41 0.132 92 0.938 42 0.138 93 0.993 43 0.145 94 1.055 44 0.152 95 1.129 45 0.159 96 1.219 46 0.166 97 1.336 47 0.173 98 1.500 48 0.181 99 1.781 49 0.188 100 ∞	1			
32 0.0803 83 0.633 33 0.0855 84 0.658 34 0.0907 85 0.684 35 0.0962 86 0.712 36 0.102 87 0.742 37 0.107 88 0.774 38 0.113 89 0.809 39 0.119 90 0.848 40 0.126 91 0.891 41 0.132 92 0.938 42 0.138 93 0.993 43 0.145 94 1.055 44 0.152 95 1.129 45 0.159 96 1.219 46 0.166 97 1.336 47 0.173 98 1.500 48 0.181 99 1.781 49 0.188 100 ∞	1			ı
33 0.0855 84 0.658 34 0.0907 85 0.684 35 0.0962 86 0.712 36 0.102 87 0.742 37 0.107 88 0.774 38 0.113 89 0.809 39 0.119 90 0.848 40 0.126 91 0.891 41 0.132 92 0.938 42 0.138 93 0.993 43 0.145 94 1.055 44 0.152 95 1.129 45 0.159 96 1.219 46 0.166 97 1.336 47 0.173 98 1.500 48 0.181 99 1.781 49 0.188 100 ∞				1
34 0.0907 85 0.684 35 0.0962 86 0.712 36 0.102 87 0.742 37 0.107 88 0.774 38 0.113 89 0.809 39 0.119 90 0.848 40 0.126 91 0.891 41 0.132 92 0.938 42 0.138 93 0.993 43 0.145 94 1.055 44 0.152 95 1.129 45 0.159 96 1.219 46 0.166 97 1.336 47 0.173 98 1.500 48 0.181 99 1.781 49 0.188 100 ∞	1			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				i
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 '			
38 0.113 89 0.809 39 0.119 90 0.848 40 0.126 91 0.891 41 0.132 92 0.938 42 0.138 93 0.993 43 0.145 94 1.055 44 0.152 95 1.129 45 0.159 96 1.219 46 0.166 97 1.336 47 0.173 98 1.500 48 0.181 99 1.781 49 0.188 100 ∞				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ŧ			1
41 0.132 92 0.938 42 0.138 93 0.993 43 0.145 94 1.055 44 0.152 95 1.129 45 0.159 96 1.219 46 0.166 97 1.336 47 0.173 98 1.500 48 0.181 99 1.781 49 0.188 100 \infty				1
42 0.138 93 0.993 43 0.145 94 1.055 44 0.152 95 1.129 45 0.159 96 1.219 46 0.166 97 1.336 47 0.173 98 1.500 48 0.181 99 1.781 49 0.188 100 \infty	1			1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1			
45 0.159 96 1.219 46 0.166 97 1.336 47 0.173 98 1.500 48 0.181 99 1.781 49 0.188 100 \infty	1			
46 0.166 97 1.336 47 0.173 98 1.500 48 0.181 99 1.781 49 0.188 100 \infty	ţ			
47 0.173 98 1.500 48 0.181 99 1.781 49 0.188 100 \infty				
48 0.181 99 1.781 49 0.188 100 ∞	1			
49 0.188 100 ∞	1			
	1			
150 0.107.	1		100	80
90 0°T21,	50	0.197		

Figure Q1.3 Variation of T_{v} with $z\ /\ H$ and Uz

Figure Q2.1 Experimental setup

		7
		•

Figure Q3.1 - Flow net for the concrete dam

Figure Q4.1 Coulomb's trial wedge

Table Q5.1 Consolidated Undrained Triaxial test results

Specimen	Cell pressure	Deviator stress	Pore water
1	(kN/m^2)	(kN/m^2)	pressure (kN/m ²)
1	50	85.67	12
2	100	157.82	30
3	150	225.46	50

