GROWTH AND PIGMENT BIOSYNTHESIS OF SPIRULINA PLATENSIS AS AFFECTED BY Pb²⁺ CONCENTRATIONS

K.K.I.U. ARUNAKUMARA¹, ZHANG XUECHENG AND ZHOU YIJING

College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China

Key words: Growth, Pb²⁺, Pigment biosynthesis, Spirulina platensis

Abstract

Growth and pigment biosynthesis of *Spirulina platensis* Geitler, an edible cyanobacterium were stimulated at low concentration (1 mg/l) of Pb²⁺. The pigment biosynthesis was found to decrease with increasing Pb²⁺concentrations. The ratio between chlorophyll *a* and carotene was constant regardless of the Pb²⁺concentration in the medium indicating that both are equally affected by Pb²⁺.

It is believed that Pb^{2+} would be toxic to most plants, because its excess amount may alter several physiological and biochemical processes (Mesmar and Jaber 1991). *Spirulina* (*Arthrospira*), an edible cyanobacterium, is globally considered as a valuable source of food supplement (Lee 1997, Li and Qi 1997) as it contains some compounds like essential fatty- and amino acids, antioxidants vitamins and minerals, at relatively high concentrations (Richmond *et al.* 1980, Roughan 1989, Cohen *et al.*1995) and thus has been cultured commercially in China (Zhang 1998, Michael 1999) as well as in some other countries. The cell wall components of *Spirulina*, such as peptydoglycan, teichuronic acid, teichoic acid, polysaccharides and proteins (Schiewer and Wong 2000) which display mainly carboxylic, hydroxyl and phosphate groups (Aksu 2002) may give the algal wall a binding property inducing bioaccumulation of heavy metals. Under this background, the present study involves an assessment on growth and pigment biosynthesis of *Spirulina platensis*, as affected by Pb²⁺ concentrations.

Spirulina platensis (S₆₋₁) culture maintained in the laboratory at College of Marine Life Sciences, Ocean University of China, was used in this study. It was grown at 25 ± 2 °C in Zarrouk liquid medium (Parada *et al.* 1998), for eight-ten days under white fluorescent light (90 µmol photon m⁻²s⁻¹) with 14 h illumination. At the exponential growth phase, the culture was filtered and used for Pb²⁺ (as Pb(NO₃)₂) treatment. Deionized water was used to prepare all solutions. All the chemicals were of analytical grade. Optical density was measured at 560 nm using a Spectrophotometer UV - 2102. An ultrasonic liquid processor (SONICS) was used to break cells for pigment analysis. Chlorophyll *a* and carotene were extracted in 90 % acetone and assayed according to Bwn-Amotz and Avron (1983). All the procedures were performed under aseptic conditions using three triplicates.

Effect of Pb^{2+} *on growth:* The cultures treated with 1, 2 and 3 mg/l, resulted 10, 5 and 4% increased growth, respectively over the control after two days of incubation. On the other hand, a slight inhibitory effect on its growth was observed at higher concentration of Pb^{2+} (Table 1). El-Naggar *et al.* (1999) reported that lower concentrations of heavy metal (Co²⁺) stimulate growth of *Nostoc muscorum*, followed by inhibition at higher concentrations. At low concentrations, substitution of Pb^{2+} for Zn²⁺ in some metabolloenzymes *in vitro* and *in vivo* may result in growth promotion (El-Sheekh *et al.* 2003). Growth reduction at higher metal concentrations could result

¹Corresponding author. Department of Crop Science, Faculty of Agriculture, University of Ruhuna, Mapalana, Kamburupitiya, Sri Lanka. E-mail: kkiuaruna@yahoo.com

from the inhibition of enzyme systems, photosynthesis, respiration, protein and nucleic acid synthesis. Torzillo (1998) mentioned that environmental stress affects the functioning of photosystem II in *Spirulina* directly or indirectly causing growth reduction.

Culture	Growth (O.D.) Pb ²⁺ concentrations (mg/l)					
time (Days)						
	0	1	2	3	4	5
2	0.134 ± 0.01	0.148 ± 0.01	0.141 ± 0.01	0.140 ± 0.02	0.136 ± 0.02	0.134 ± 0.01
4	0.182 ± 0.01	0.203 ± 0.03	0.193 ± 0.01	0.192 ± 0.02	0.191 ± 0.03	0.191 ± 0.04
6	0.294 ± 0.05	0.301 ± 0.06	0.293 ± 0.05	0.291 ± 0.07	0.284 ± 0.04	0.281 ± 0.05
8	0.351 ± 0.06	0.372 ± 0.02	0.372 ± 0.07	0.364 ± 0.06	0.341 ± 0.04	0.341 ± 0.05
10	0.464 ± 0.05	0.482 ± 0.04	0.484 ± 0.05	0.474 ± 0.05	0.461 ± 0.07	0.454 ± 0.08

Table1. Effect of Pb²⁺ concentrations (mg/l) on the growth of *S. platensis*.

95% confidence interval was used to determine error.

*Effect of Pb*²⁺ *on pigments:* Low concentration of Pb²⁺ (1 mg/l) shows a slight increase in chlorophyll *a* content, whereas cultures treated with 3, 4 and 5 mg/l Pb²⁺ reduced the amount by 4, 11 and 15 % respectively, compared to control. carotene increased (9 %) at lower concentrations (1 mg/l) and decreased by 6, 7 and 7% at 3, 4 and 5 mg/l Pb²⁺, respectively. However, the ratio between chlorophyll *a* and carotene remained constant (3.8) regardless of the Pb²⁺ concentration in the medium (Fig. 1) indicating that chlorophyll *a* and carotene are equally affected by Pb²⁺ concentrations.

Fig. 1. Effect of Pb²⁺ concentrations on pigment content of *S. platensis*. \square Chl. a (mg/l), \square β car. (mg/l).

De Filippis *et al.* (1981) reported that the reduction in chlorophyll *a* content is a common symptom of heavy metal toxicity. Csatorday *et al.* (1984) reported in microalgae an inhibition of chlorophyll biosynthesis due to high Co^{2+} treatments. Heavy metals like Arsenic (As) at 100 µg/l or above have been found to affect N₂-fixing activity of symbiotic cyanobacteria *Anabaena azollae* (Aziz 2001). He also observed negative effect of As on chlorophyll *a* and *b* synthesis and

increased anthocyanin formation in *Azolla filiculoides* as the concentration of As is increased. The present reductions in chlorophyll *a* and carotene at higher concentrations are in agreement with previous reports.

It appears that at 1 mg/l Pb^{2+} the growth and pigment synthesis were stimulated, but at 3 mg/l or above those were reduced.

Acknowledgements

The financial support for this study from the Chinese Scholarship Council is acknowledged.

References

- Aksu, Z. 2002. Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel(II) ions onto *Chlorella vulgaris*. Process Biochem. **38**: 89-99.
- Aziz, A. 2001. *Azolla filiculoides* Lam. and *A. pinnata* R. Brown to measure arsenic pollution in groundwater. Bangladesh J. Bot. **30**(1): 17-24.
- Bwn-Amotz, A. and M. Avron. 1983. On the factors which determine massive β-carotene accumulation in the halotolerant alga *Dunaliella bardawil*. Plant Physiol. **72**: 593–597.
- Cohen, Z., M. Cristina and L.Tomaselli. 1995. Chemotaxonomy of cyanobacteria. Phytochem. 4: 1155-1158.
- Csatorday, K., Z. Gombos and B. Szalontai. 1984. Manganese and cobalt toxicity in chlorophyll biosynthesis. Proc. Nat. Acad. Sci. USA. **81**: 476-478.
- De-Filippis, L.F., R. Hampp and H. Ziegler. 1981. The effects of sublethal concentrations of zinc, cadmium and mercury on *Euglena* growth and pigments. Z. Pflanzen. Physiol. **101**: 37-47.
- El-Naggar, A.H., M.A Osman and E.A. El-Mohsenawy. 1999. Cobalt and lead toxicities on *Calothrix fusca* and *Nostoc muscorum*. J. Union Arab boil. Cairo **7**: 421-441.
- El- Sheekl, M.M., M.E. El-Naggar, Osman and E. El-Mazaly. 2003. Effect of Cobalt on growth, pigments and the photosynthetic electron transport in *Monoraphdium minutum* and *Nitzchia perminuta*. Braz. J. Plant Physiol. **15**(3): 159-166.
- Lee, Y.K. 1997. Commercial production of microalgae in the Asia-Pacific rim. J. Appl. Phycol. 9: 403-411.
- Li, D.M. and Y.Z. Qi. 1997. *Spirulina* industry in China: present status and future prospects. J. Appl. Phycol. 9: 25-28.
- Mesmar, M.N. and K. Jaber. 1991. The toxic effect of lead on seed germination, growth, chlorophyl and protein contents of wheat and *Lens*. Department of Biological Science, Yarmouk University, Irbid, Jordan. 42(4): 331-334.
- Michael, A.B. 1999. Commercial production of microalgae: ponds, tanks, tubes and fermenters. J. Biotechnol. **70**: 313-321.
- Parada, J.L., G.Z. de Caire, M.C.Z de Mule and M.M.S. de Cano. 1998. Lactic acid bacteria growth promoters from *Spirulina platensis*. Int. J. Food Microbiol. 45: 225-228.
- Richmond, A., A. Vonshak and S.M. Arad. 1980. Environmental limitations in outdoor production of algal biomass. In: Algae biomass (G. Shelef and C.J. Soeder Ed.), pp. 65-72. Elsevier /North Holland Biomedical Press.
- Roughan, P.G. 1989. Spiulina: A source of dietary gama-linolenic acid J. Sc. Food Agric., 47: 85-93.
- Schiewer, S. and M.H. Wong. 2000. Ionic strength effects in biosorption of metals by marine algae. Chemosphere. **41**: 271-282.
- Torzillo, G. 1998. Optimization of microalgal productivity outdoors: use of an online Chlorophyll fluorescence technique, 52nd Ann. Meet. Phycol. Soc. Am.
- Zhang, X. 1998. Large-scale cultivation of *Spirulina* in China; today and tomorrow. Biosystem Studies. 1: 66-73.

(Manuscript received on 17 April, 2001; revised on 8 April, 2007)

Bangladesh J. Bot. 36(2): 105-110, 2007 (December)