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Abstract Phytoextraction is an environmentally sound and cost-effective technology 
for cleaning up soils contaminated with toxic metals. The success of phytoextrac-
tion depends on the ability of plants to produce large amounts of biomass. In addi-
tion, plants must be tolerant to the target metals and be efficient to translocate metals 
from roots to the aboveground organs. The effectiveness of phytoextraction also 
depends upon site and metal species. However, the amount of metals extracted by 
plants is basically decided by (1) the metal concentration in dry plant tissues and 
(2) the total biomass of the plant. Certain varieties of high-biomass crops have been 
found to have the ability to clean up the contaminated soils. The major advantage of 
using crop plants for phytoextraction is the known growth requirements and well-
established cultural practices. One of the most promising, and perhaps widely 
studied crop plant for the extraction of heavy metals is Indian mustard. Other crops 
like sweet sorghum, oat, barley, maize, and sunflower are also reported to accumulate 
toxic metals. As established cultural practices may not elicit the same plant response 
as observed under non-contaminated conditions, attention must be paid on develop-
ing suitable agronomic practices to optimize the growth of plants even under con-
taminated conditions. Further, a coordinated effort is required to collect and preserve 
germplasm of accumulator species where molecular engineering can play a key role 
in developing engineered plants capable of cleaning up contaminated soils and 
commercializing phytoextraction strategies.
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19.1  Introduction

Since the Industrial Revolution, pollution of the biosphere with trace elements 
(heavy metals and metalloids) has accelerated dramatically. Many of these trace 
elements are toxic even at very low concentrations because of their nonbiodegrad-
able nature, long biological half-life, and potential to accumulate inside the living 
bodies (Behbahaninia et al. 2009). Excessive deposits of heavy metals in agricul-
tural soils may not only result in soil contamination but also lead to elevated heavy 
metal uptake by crop plants affecting quality and safety of foods (Muchuweti et al. 
2006). Therefore, cleaning up of polluted soils is a subject of utmost concern to 
human beings. Most of the currently practiced remediation methods are primarily 
based upon civil engineering techniques whose cost is highly variable and depends 
on the contaminants of concern, soil properties, and site conditions (Lasat 2002). 
They are not only expensive but environmentally invasive, too. The search for an 
alternative remediation technique that is economically viable, environmentally 
sound, and equally protective of human health is thus urgently required. Strategies 
of this nature are classified under the generic heading of phytoremediation (Iskandar 
2000; Iskandar and Kirtham 2001; Kabata-Pendias 2001), which is an emerging 
biotechnological application based on “green liver concept” and operates on the 
principles of biogeochemical cycling (Prasad 2004).

Phytoremediation consists of different plant-based technologies (Table 19.1), 
each having a different mechanism of action for the remediation of metal-polluted 
soils, sediment, or water. However, the terms phytoremediation and phytoextrac-
tion are often incorrectly used as synonyms, though phytoremediation is a concept, 
while phytoextraction is a specific cleanup technology (Prasad and Freitas 2003). 
Phytoextraction is in fact the most commonly recognized of all phytoremediation 
technologies and is the focus of the present review. Phytoextraction actually refers 
to a diverse collection of plant-based technologies that use either naturally occur-
ring or genetically engineered plants for cleaning contaminated environments 
(Flathman and Lanza 1998).

While many plant species avoid uptake of heavy metals from contaminated 
soils, some characteristic plant species thriving in metal-enriched environments 
can accumulate significantly high concentrations of toxic metals, to levels that by 
far exceed the soil levels. These species are generally called hyperaccumulators 
and, among them, some crop plant species are also found. When phytoextraction 
is practiced, metal-accumulating plants are seeded or transplanted into metal polluted 
soil and are cultivated according to the established agricultural practices. The 
roots of established plants absorb metal elements from the soil and translocate 
them to the aboveground shoots where they accumulate. If metal availability in 
the soil is not adequate for sufficient plant uptake, chelates or acidifying agents 
may be used to liberate them into the soil solution (Huang and Cunningham 1996; 
Huang et al. 1997; Lasat et al. 1998). After sufficient plant growth and metal 
accumulation, the aboveground parts of the crop are harvested and removed from 
the contaminated site.
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19.2  What Merits Does It Have?

The phytoextraction is an environmental friendly green technology involving  living 
plants. These plants act as solar-driven pumps, which can extract and concentrate 
particular elements from the environment (Raskin et al. 1997). Therefore, phytoex-
traction offers a cost-effective means for cleaning of metal-contaminated soils, 
because the cost of metal phytoextraction is only a fraction of that associated with 
conventional engineering technologies (Zhuang et al. 2009). This technology 
avoids dramatic landscape disruption as it remediates the soil in situ. Furthermore, 
no artificial materials are used, hence, preserving the ecosystem. In contaminated 
agricultural lands, metal removal and getting a harvest synchronously can be a key 
element of a new strategy for land management (Zhuang et al. 2009). However, 
some limitations avoid the wide application of this technology. The success of 
phytoextraction is primarily dependent upon the bioavailability of the contami-
nants of concern for plant uptake. Usually readily available metals in soil solution 
are free metal ions and soluble metal complexes and metals adsorbed to inorganic 
soil constitutes at ion exchange site. Therefore, phytoextraction is better suited for 
metals such as Zn and Cd, which occur primarily in exchangeable and readily bio-
available form, while the others need to be treated separately for making them 
bioavailable. Selection of plant species is of particular importance as most of accu-
mulator species are slowly growing and produce little biomass over period of time. 
In addition, slow transport of metals from soil particles to root surface is another 
major factor limiting metal uptake into roots (Claus et al. 2007). Even after enter-
ing to the roots, many heavy metals form sulfate, carbonate, or phosphate precipi-
tates and immobilize these  metals in apoplastic (extracellular) and symplastic 
(intracellular) compartments. Apoplastic transport of metals is further limited by 

Table 19.1 Types of phytoremediation techniques

Technique Process Medium

Phytoextraction Accumulation of contaminants in shoots  
and subsequent shoot harvest

Soil

Rhizofiltration Absorption/adsorption of contaminants  
in/on roots

Surface water

Phytostabilization Root and root exudates reduce  
bioavailability of contaminant

Soil, groundwater

Phytovolatilization Evaporation of contaminants through  
plant transpiration

Soil, groundwater

Phytodegradation Plant-assisted microbial degradation  
of contaminants in rhizosphere

Soil, groundwater

Phytotransformation Plant uptake and degradation  
of contaminants

Soil, groundwater, 
surface water

Removal of Aerial Uptake of volatile contaminants by leaves Air

(Compiled from Yang et al. 2005; Arthur et al. 2005; Solheim 2008)
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the high cation-exchange  capacity of cell walls (Raskin et al. 1997). The highly 
insoluble nature of most of the hazardous metals interrupts their free movement in 
the vascular system of the plant. Therefore, translocating them to the aboveground 
shoots where their accumulation has taken place is also restricted. Phytoextraction 
is obviously a long-term remediation effort, requiring many cropping cycles to 
decontaminate metal pollutants to acceptable levels (Zhuang et al. 2009; Shukla 
et al. 2010). The depth of soil which can be cleaned or stabilized is restricted to the 
root zone of the plants being used. Depending on the plant, this depth can range 
from a few inches to several meters (Schnoor et al. 1995; Chen et al. 2000, 2003). 
This technology is applicable only to sites that contain low to moderate levels of 
metal pollution, because plant growth is not sustained in heavily polluted soils. The 
advantages and limitations of using crop plants for cleaning up contaminated soils 
are summarized in Table 19.2.

19.3  What Factors Decide the Success of Phytoextraction?

The effectiveness of phytoextraction is dependent upon many factors of which 
some are plant-, site-, or metal-specific characteristics. However, the amount of 
metals extracted by plants is basically decided by (1) the metal concentration in dry 
plant tissues and (2) the total biomass of the plant. Therefore, the product of these 
factors estimates the total amount of metal extracted from the contaminated soil 

Table 19.2 Advantages and limitations of phytoextraction with crop plants

Advantages Limitations

Eco-friendly green technology involving  
living plants

Low cost of implementation as  
compared to conventional means

Aesthetically pleasing and avoids dramatic 
landscape disruptions

No artificial materials are generally  
used

Applicable to a range of toxic metals  
and radionuclides

Eliminate secondary air- or waterborne  
wastes.

Enhance regulatory and public acceptance
Can get a harvest synchronously  

with metal removal
Known agronomic and crop management 

practices can be used
Life cycle and biology of crop are well 

understood
Easily implemented and maintained

Better suited for metals that are readily 
bioavailable

Some metals need to be treated separately  
for making them bioavailable

Most of the identified species are slowly 
growing and produce little biomass over  
a period of time

Long-term remediation effort, requiring 
many cropping cycles to decontaminate 
metal pollutants to acceptable levels

Depth of soil that can be cleaned or 
stabilized is restricted to the root zone of 
the plants being used

Applicable only to sites that contain low to 
moderate levels of metal pollution

Potential contamination to food chain
Results are variable
Climate dependent
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(Claus et al. 2007). The time required for remediation is dependent upon the type 
and extent of metal contamination, the length of the growing season, and the efficiency 
of metal removal by plants (Blaylock and Huang 2000). In addition, as this is 
essentially an agronomic approach, some agronomic practices, such as, plant selec-
tion, possibility of cultivation, fertilization and irrigation, etc., could also play a 
crucial role in successful cleaning of a contaminated site (Claus et al. 2007).

As a plant-based technology, the success of phytoextraction inherently depends 
upon several plant characteristics. The plant should have the ability to produce large 
amounts of biomass rapidly using standard crop production and management prac-
tices (Das and Maiti 2007) together with high efficiency of metal accumulation in 
shoot biomass (Blaylock et al. 1997; McGrath 1998; Shah and Nongkynrih 2007). 
Plants considered for use must also be tolerant to the targeted metal, or metals, and 
be efficient at translocating them after uptake by roots to the harvestable aboveg-
round portions (Blaylock and Huang 2000). In addition to the high shoot biomass, 
a dense root system is important while growing under hardy conditions. Among the 
site-specific characteristics, the topography of the land should be acceptable and 
free from physical barriers, which otherwise could prevent the use of agricultural 
equipment and machineries. The distribution of metals in soil profiles and their 
movement in soils, which are primarily determined by many soil related factors, 
also contribute to the efficiency of metal removal by plants. In fact, a major factor 
limiting metal uptake into roots is the slow transport from soil particles to root 
surfaces (Claus et al. 2007). The accumulation of the metals in the surface layer of 
the soil seems to be related to the properties associated with high adsorption rate of 
the metals by soil solid phases (Behbahaninia et al. 2009). In this context, soil acidity, 
light texture, and structural features, such as soil cracks, can be considered as 
important factors (Smith 1996). Soil pH plays a key role in making the availability 
of elements in the soil for plant uptake (De Matos et al. 2001; Bambara and 
Ndakidemi 2010; Yobouet et al. 2010). According to Anton and Mathe-Gaspar 
(2005), higher temperature and lowering soil pH have resulted in increased cadmium 
and zinc contents of sorrel and maize shoots. Under acidic conditions, H+ ions dis-
place metal cations from the cation exchange complex (CEC) of soil components 
and cause metals to be released from sesquioxides and variable-charged clays to 
which they have been chemisorbed (McBride 1994).

19.4  Mechanisms of Phytoextraction

Proper understanding of the biological processes associated with metal acquisition, 
transport, and shoot accumulation is the key to formulate sound strategies for improv-
ing phytoextraction. In this context, why do plants absorb metals is the fundamental 
question to be answered. Plants need nutrients as they are among the key require-
ments for the growth and development of a plant. Some metals, such as Co, Cr, Cu, 
Fe, K, Mg, Mn, Na, Ni, and Zn, are essential, serve as micronutrients, and are 
used for redox processes, to stabilize molecules through electrostatic interactions, as 
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components of various enzymes, and for regulation of osmotic pressure (Bruins et al. 
2000; Odjegba and Fasidi 2004). Many other metals have no biological role (e.g., 
Ag, Al, Cd, Pb, and Hg), and are nonessential (Bruins et al. 2000; Kamal et al. 2004) 
and potentially toxic to microorganisms. Therefore, it is understood that plants take 
some metals as they are essential nutrients. The literature on the mechanisms of root 
and plant cell uptake of elements like N, P, S, Fe, Ca, K, and possibly Cl is reported 
(Marschner 1995). However, little is known about how plants mobilize, uptake, and 
transport of most environmentally hazardous heavy metals, such as, Pb, Cd, Cu, Zn, 
U, Sr, and Cs. Nonessential metals, however, may effectively compete for the same 
transmembrane carriers used by essential metals (Thangavel and Subbhuraam 2004). 
Nutrient uptake pathways can also take up heavy metals that are similar in chemical 
form or behavior to the nutrients (Pivetz 2001). However, even for essential ele-
ments, plants keep maintaining the accumulation below their metabolic needs 
(<10 ppm) (Oyelola et al. 2009). Hyperaccumulator plants, however, can accumulate 
exceptionally high amounts of micronutrients. They not only accumulate excessively 
high levels of essential micronutrients, but can also absorb significant quantities of 
nonessential metals. Hyperaccumulators are capable of accumulating metals 100-
fold higher (2% on the dry weight basis) than those typically measured in shoots of 
the common non-accumulator plants (Claus et al. 2007), and their metal tolerance 
has enhanced the interest of ecologists, plant physiologists, plant biologists and envi-
ronmentalists to investigate the physiological and genetical factors responsible for 
metal uptake and tolerance in plants. Accumulator species have evolved specific 
mechanisms for detoxifying high metal levels accumulated in the cells, which allow 
bioaccumulation of extremely high concentration of metals (Yang et al. 2005). In 
fact, they do have their own mechanisms to absorb, translocate, and store the metals 
they need. In this regards, the structure and properties of cell membranes play a cru-
cial role in metal absorption process. Because of their charge, metal ions cannot 
move freely across the cellular membranes and taking up metals into cells are 
mediated by membrane proteins with transport functions (Hooda 2007).

In soil, metals are found in different forms: (1) in solution as free metal ions and 
soluble metal complexes; (2) adsorbed to inorganic soil constituents on ion exchange 
sites; (3) precipitated such as oxides, hydroxides, and carbonates; (4) bound to soil 
organic matter; and (5) embedded in structures of silicate minerals. Plants do have 
several mechanisms to solubilize “soil-bound” metals and subsequent uptake (Raskin 
et al. 1997). Plant roots can solubilize soil-bound metals by acidifying their soil 
environment with protons extruded from the roots (Thangavel and Subbhuraam 
2004). In the rizhosphere, root and microbial activities can influence the chemical 
mobility of metal ions and ultimately their uptake by plants as consequence of altera-
tions of soil pH or dissolved organic carbon (Hinsinger and Courchesne 2007). 
Metal-chelating molecules can also be secreted into the rhizosphere to chelate and 
solubilize “soil-bound” metal (Yang et al. 2005; Hooda 2007). Some rhizosphere 
microorganisms also secrete plant hormones that increase root growth and thereby 
the secretion of root exudates (Hooda 2007). In this context, chelating compounds, 
termed phytosiderophores, have been studied in plants (Higuchi et al. 1999). 
Some plant roots are capable of reducing “soil-bound” metal ions by specific plasma 
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membrane-bound metal reductases, which may increase metal availability (Thangavel 
and Subbhuraam 2004). For example, in response to iron deficiency, plants develop 
several biochemical and morphological reactions to ameliorate iron solubilization 
and uptake from the soil solution (Hell and Stephan 2003). The biochemical and 
physiological mechanisms induced in dicotyledonous plants under conditions of iron 
deficiency comprise three main processes (Babalakova et al. 2005). The first one 
includes an increased release of protons through the activation of plasmalemma 
P-type ATPase proton pump to acidify the surrounding solution, thus enhancing 
Fe(III)-containing compounds solubility (Espen et al. 2000). The second process is 
an obligatory reduction of ferric-chelates by a membrane-associated Fe(III)-chelate 
reductase to the more soluble ferro-complexes (Robinson et al. 1999). The third 
effect of short-term treatment with ionic and chelated copper on membrane adaptive 
biochemical response is an induction of the synthesis of a specific transporter for 
ferro-ions in plasmalemma of root cells (Hell and Stephan 2003). In addition, mycor-
rhizal fungi or root-colonizing bacteria can also be used in increasing the bioavail-
ability of metals (Frey et al. 2000; Khan et al. 2000; Hooda 2007). Mobilized metals 
then enter the root cells by symplastic or apoplastic pathways (Solheim 2008). Most 
likely, entrance is via metal ion carriers or channels; however, specialized carriers 
could also exist for the transport of metal–chelate complexes (Solheim 2008).

The transmembrane structure facilitates the transfer of bound ions from extracel-
lular space through the hydrophobic environment of the membrane into the cell 
(Lasat 2002). However, of all the adsorbed metals physically at the extracellular 
negatively charged sites of the root cell walls, only a part enters inside the cells. For 
success of phytoextraction, absorbed metals, however, should also be transported 
from roots to shoot, which is primarily controlled by how much water is released 
from leaves during transpiration and the pressure created by the roots (Welch 1995). 
Therefore, as the rate of transpiration increases, the internal movement of metal-
containing sap from the root to the shoot also increases, allowing roots to absorb 
more moisture from the soil. Generally, a significant fraction of cell wall-bound 
metals cannot be translocated to the shoots and, thus, cannot be removed by harvest-
ing shoot biomass (Lasat 2002). Apart from binding onto the cell wall, there are 
some other means also that determine metal immobilization into roots and subse-
quent inhibition of ion translocation to the shoot. Complexation in cellular struc-
tures of roots could also prevent translocation of metals to the aboveground parts 
(Lasat et al. 1998). In addition, some plants, coined excluders, possess specialized 
mechanisms to restrict metal uptake into roots (Lasat 2002). The excluders prevent 
metal uptake into roots avoiding translocation and accumulation in shoots. Though 
excluders have a low potential for metal extraction, they can be used to stabilize the 
soil, and avoid further contamination spread due to erosion (Dahmani-Muller et al. 
2000). Most environmentally hazardous metals are too insoluble to move freely in 
the vascular system of the plant. Many forms like sulfate, carbonate, or phosphate 
precipitate by immobilizing these metals in apoplastic and symplastic compart-
ments (Raskin et al. 1997; Ghosh and Singh 2005). However, plant species have 
unique abilities to tolerate, accumulate, and detoxify metals and metalloids (Danika 
and LeDuc Norman 2005). Several hundred plant species have so far been identified 
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as hyperaccumulators of different metals (McGrath and Zhao 2003; McIntyre 2003; 
Ghosh and Singh 2005). Hyperaccumulators are found from a wide range of taxo-
nomic groups (45 different families) (Baker et al. 2000) and geographic areas and 
possess a wide variety of morphologies, physiologies, and ecological characteristics 
(Pollard et al. 2002). The majority of them accumulate only one metal (Pollard et al. 
2002) although a significant number show the ability to accumulate more than one 
(He et al. 2002; Yang et al. 2004; McIntyre 2003).

19.5  How to Enhance the Efficiency of Phytoextraction?

As many factors either directly or indirectly affect the efficacy of phytoextraction, it 
is important to employ an integrated approach in order to remove heavy metals from 
contaminated sites. Such integrated strategy may include selection of high-biomass-
producing crops, identify plants that could grow in varying environmental condi-
tions, selection of improved crop husbandry, innovative soil management practices, 
etc., to ensure high metal removal rates from contaminated soils (Nowack et al. 
2006; Evangelou et al. 2007). Therefore, selection, breeding, and genetic engineer-
ing of metal accumulators can be considered as the key areas of practical signifi-
cance. The bioavailability of metals for plant uptake can be altered in several means. 
For example, if the soil contains chelating agents, they can form soluble complexes 
with metals, thereby enhancing movement of metals in soil profile (Behbahaninia 
et al. 2009). To achieve this, use of different chelators has shown a dramatic increase 
in the metal mobility in soil substrate keeping metals as soluble chelate–metal 
complexes which become available for uptake by roots and are later on transported 
within the plants. Many chemical amendments, such as ethylene diamine tetra acetic 
acid (EDTA), diethylene triamine penta acetic acid (DTPA), nitrilotri acetic acid 
(NTA), and organic acids, have been used in pot and field experiments to enhance 
extraction rates of heavy metals and to achieve higher phytoextraction efficiency 
(Kayser et al. 2000; Thaylakumaran et al. 2003; Tandy et al. 2004; Ke et al. 2006; 
Wang et al. 2007; Wu et al. 2006; Zhuang et al. 2009). However, the effectiveness 
of different chelating agents is highly variable with the plant species and metal 
involved.

Though EDTA has been proved as one of the most efficient chelating agents in 
enhancing Pb phytoavailability in soil and subsequent uptake and translocation to 
shoots (Chen and Cutright 2001; Shen et al. 2002; Claus et al. 2007; Zhuang et al. 
2009), it has failed, however, in enhancing some other metals such as Cd, Zn, and Cu 
accumulation in plants (Lai and Chen 2004; McGrath et al. 2006; Zhuang et al. 
2009). Furthermore, there is enough evidence that suggest that some plant species 
had no remarkable response to the application of EDTA (Zhuang et al. 2005, 2007). 
When several heavy metals are present in the soil, interactions and subsequent inhibi-
tory effects can play a role in responding to the added EDTA. Another key area to be 
considered is the physical features of the soil, because if the soil allows leaching of 
metal-chelating agents, it might possibly be a threat to groundwater contamination 
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(Nowack et al. 2006). Therefore, use of EDTA to enhance phytoextraction requires a 
critical assessment. Diethylene triamine penta acetic acid is another superior reagent 
used in extraction of metals, such as Cd, Pb, Zn, and Ni from contaminated soils 
(Behbahaninia et al. 2009). The DTPA extraction has frequently been found to 
correlate with amounts of metals taken up by the plants (Nouri et al. 2001). In a 
similar study, addition of thiosulfate and thiocynate salts to mine spoil has reportedly 
induced plants to accumulate Hg (Moreno et al. 2005) while chloride anions are 
shown to increase the Cd solubility in soils by forming relatively stable chloride ion 
complexes, for example, CdCl+ and CdCl

2
 (Weggler et al. 2004). According to 

Zhuang et al. (2005), inorganic agents like elemental sulfur or ammonium sulfate 
could also enhance metal accumulation. It has repeatedly been reported that the 
application of ammonium to soil could promote the phytoavailability of heavy metals 
from the contaminated soil (Xiong and Lu 2002; Zaccheo et al. 2006).

It seems that some soil applications (such as sludge) can produce soluble organic 
complexes with the heavy metals. These complexes are more mobile and possibly 
more readily taken up by plants than free metal ions (Shuman 2005; Senesi and 
Loffrdo 2005; Nouri et al. 2006). However, due to changing of their available forms 
to some unavailable forms such as fractions associated with organic materials, car-
bonates, or metal oxides (Walker et al. 2004), bioavailability of metals sometimes 
can be decreased by the organic amendments (Wei et al. 2010). Due to continuous 
loading of pollutants, heavy metals can be released into groundwater or soil solu-
tion, which are then available for plant uptake (Mapanda et al. 2004). Lowering in 
soil pH can weaken the retention ability of toxic metals to soil organic matter result-
ing in more available metal in soil solution for root absorption. In fact, many metal 
cations (e.g., Cd, Cu, Hg, Ni, Pb, and Zn) are more soluble and available in the soil 
solution at low pH (below 5.5) (Blaylock and Huang 2000). It could, therefore, be 
suggested that the phytoextraction process is enhanced when metal availability to 
plant roots is facilitated through the addition of acidifying agents to the soil (Brown 
et al. 1994; Salt et al. 1995). Possible amendments of acidification include NH

4
-

containing fertilizers, organic and inorganic acids, and elemental S.
Fertilization, on the other hand, can enhance the growth of the plants resulting in 

high biomass, which has also been used in increasing the efficiency of phytoextrac-
tion (Wei et al. 2010). For example, Wei et al. (2010), in a study with Solanum 
nigrum, reported that the application of urea has enhanced the efficiency of phyto-
extraction. After application of natural N-P-K fertilizer, particularly at the early 
stage of growth, the biomass of common reed (Phragmites australis) was increased 
by twofold compared to control plants that subsequently improved phytoextraction 
of Ni and Zn by 2–3-folds (Claus et al. 2007). In addition, fertilizers with high con-
tent of NH

4
+ have the additional benefit of lowering the soil pH, leading to an 

increase in plant uptake of metals. According to Zaccheo et al. (2006), soils amended 
with (NH

4
)

2
SO

4
 and (NH

4
)

2
S

2
O

3
 led to an increase in metal availability due to 

decreased soil pH. The addition of NH
4
NO

3
 and (NH

4
)

2
SO

4
 to soil, however, did not 

increase Zn and Cu accumulation in three sorghum varieties (Zhuang et al. 2009). 
The contradictory reports on the effect of ammonium fertilization on phytoextraction 
are basically due to the degree of solubilization of metals under different soil pH 
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levels. Generally, Zn and Cd can easily be solubilized at pH values of conventional 
soils, whereas the solubilization of Pb and Cu occurs at lower pH (Schmidt 2003). 
Therefore, metal availability in soil can be manipulated by the proper ratio of NO

3
 

to NH
4
 used for plant fertilization.

19.6  Promising Crop Plants

Many studies have indicated that certain varieties of high-biomass crops display 
heavy metal tolerance and/or ability to cleaning up the contaminated soils. In this 
regard, Kumar et al. (1995) evaluated several fast-growing Brassicas such as Indian 
mustard (Brassica juncea L. Czern), black mustard (Brassica nigra Koch), turnip 
(Brassica campestris L.), rape (Brassica napus L.), and kale (Brassica oleracea L) 
for their ability to tolerate and accumulate metals. Indeed, Indian mustard is one of 
the most promising, and perhaps most studied, non-hyperaccumulator plant for the 
extraction of heavy metals from contaminated sites (Prasad and Freitas 2003). 
Upon further screening, it was found effective in sorbing particularly divalent cations 
of toxic metals (Salt and Kramer 2000). In a similar study, Dushenkov et al. (1995) 
observed that the roots of Indian mustard are effective in the removal of Cd, Cr, Cu, 
Ni, Pb, and Zn as also reported by others (Ebbs and Kochian 1998; Prasad and 
Freitas 2003). In a recent investigation, the leaves of sorghum plants have been 
found very effective in the removal of Pb, while the removal of Cd, Zn, and Cu was 
maximum by stems (Zhuang et al. 2009). Sweet sorghum (Sorghum bicolor L.) a 
hardy, C4 grass widely used as a forage crop (Buxton et al. 1998; Unger 2001) and 
as a great promising energy plant, has also shown to display a potential removing 
ability also due to its fast-growing and high-biomass production capacity. Zhuang 
et al. (2009) have used three varieties of sweet sorghum to evaluate the phytoex-
traction efficiency of heavy metals. Their results revealed that even when grown in 
the contaminated soil, sorghum plants can extract more than 0.05 kg/ha of Cd in a 
single crop and the removal of Pb and Zn was 0.35 and 1.44 kg/ha, respectively. 
Similar findings for sorghum plant were also reported by Marchiol et al. (2007) 
who calculated the values of 0.38 kg/ha for Pb and 1.22 kg/ha for Zn in an alkaline, 
industrial-polluted soil. These reports confirmed the findings of An (2004) who 
also reported the ability of sweet sorghum to accumulate metal elements. According 
to Madejón et al. (2003), compared to sorghum plant, sunflower (Helianthus 
 annuus L.) could extract significantly greater amount of Zn (2.14 kg/ha), when the 
roots were also considered in calculations. Studies conducted with hydroponic 
solutions revealed that sunflower can remove Pb (Dushenkov et al. 1995), U 
(Dushenkov et al. 1997a), 137Cs, and 90Sr (Dushenkov et al. 1997b). Claus et al. 
(2007) have used sunflower, maize (Zea mays L.), and rape (Brassica napus) to 
assess the removal of Cd, Cu, Ni, Zn, Cr, and Pb from a contaminated site. 
According to their findings, rape plants bioconcentrated up to 40 ppm Cr and Pb. 
Even though maize produced the largest biomass, the total amount of metals taken 
up by this plant was lower than sunflower and rape plants. Metal removal capacity 
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of different plants has also been studied in various cultural practices by Keller et al. 
(2003) and Ciura et al. (2005) using maize as the test plant, while Madejón et al. 
(2003) and Soriano and Fereres (2003) tested sunflower and barley respectively for 
assessing their metal-removing potential.

In addition to Indian mustard, Zn has also been removed successfully by oat 
(Avena sativa L.) and barley (Hordium vulgare L.) with the established cultural 
practices (Ebbs and Kochian 1998). Some more reports are also available on Indian 
mustard, oat, maize, barley, sunflower, and ryegrass (Salt et al. 1998; Shen et al. 
2002; Meers et al. 2005; Komárek et al. 2007). Moreover, fast-growing willows 
(Salix viminalis) and poplars (Populus sp.) are excellent producers of biomass and 
have characteristics that make these species promising for phytoremediation appli-
cation (Vervaeke et al. 2003). Keller et al. (2003) reported that Nicotiana tabacum 
L. has the ability to produce 12.6 t/ha of biomass, which could extract 1.83 kg/ha of 
Zn, 0.47 kg/ha of Cu and 0.042 kg/ha of Cd. Potentially promising crop plants with 
respective metals are given in Table 19.3.

Table 19.3 Potentially promising crop plants for phytoextraction

Metal Species Reference

Pb Lycopersicon  
esculentum

Cornu et al. (2007) and Oyelola et al. (2009)

Sorghum bicolor Marchiol et al. (2007) and Zhuang et al. (2009)
Helianthus annuus Madejón et al. (2003), Marchiol et al. (2007),  

and Claus et al. (2007)
Zea mays Ciura et al. (2005) and Claus et al. (2007)
Hordeum vulgare Soriano and Fereres (2003)
Brassica juncea Ebbs and Kochian (1997) and Prasad  

and Freitas (2003)
Brassica napus Claus et al. (2007)
Pisum sativum Huang et al. (1997)
Amaranthus cruentus Oyelola et al. (2009)

Cd Sorghum bicolor Zhuang et al. (2009)
Helianthus annuus Turgut et al. (2004), Claus et al. (2007),  

and Marchiol et al. (2007)
Zea mays Ciura et al. (2005) and Claus et al. (2007)
Hordeum vulgare Soriano and Fereres (2003)
Brassica juncea Zavoda et al. (2001), Keller et al. (2003),  

and Prasad and Freitas (2003)
Nicotiana tabacum Keller et al. (2003)
Brassica napus Claus et al. (2007)

Zn Sorghum bicolor Madejón et al. (2003), Marchiol et al. (2007), 
and Zhuang et al. (2009)

Helianthus annuus Madejón et al. (2003), Marchiol et al. (2007), 
and Claus et al. (2007)

Zea mays Ciura et al. (2005) and Claus et al. (2007)
Hordeum vulgare Ebbs and Kochian (1998)  

and Soriano and Fereres (2003)

(continued)
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19.7  What Aspects Need More Investigations?

Though, phytoextraction has been intensively investigated over the years, only a 
scanty of information is available on the usage of crop plants for the metal removal 
from contaminated sites. The prime advantage of using common crop species for 
phytoextraction is the known growth requirements and well-established cultural 
practices. Although some crop species were found to accumulate heavy metals 
while producing high biomass in response to established agricultural management 
(Ebbs and Kochian 1998), growth and yield performances may vary widely under 
contaminated conditions (Blaylock et al. 1997), and even established cultural 
practices sometimes may not elicit the same plant response as observed under 

Table 19.3 (continued)

Metal Species Reference

Brassica juncea Kumar et al. (1995), Keller et al. (2003),  
and Prasad and Freitas (2003)

Nicotiana tabacum Keller et al. (2003)
Brassica napus Claus et al. (2007)
Avena sativa Ebbs and Kochian (1998)

Cr Helianthus annuus Zavoda et al. (2001), Turgut et al. (2004),  
and Claus et al. (2007)

Brassica juncea Kumar et al. (1995) and Zavoda et al. (2001)
Zea mays Claus et al. (2007)
Brassica napus Claus et al. (2007)

Cu Sorghum bicolor Zhuang et al. (2009)
Helianthus annuus Madejón et al. (2003), Marchiol et al. (2007), 

and Claus et al. (2007)
Zea mays Brun et al. (2001), Ciura et al. (2005), and 

Claus et al. (2007)
Hordeum vulgare Soriano and Fereres (2003)
Brassica juncea Prasad and Freitas (2003)
Nicotiana tabacum Keller et al. (2003)
Brassica napus Claus et al. (2007)
Lycopersicon  

esculentum
Cornu et al. (2007) and Oyelola et al. (2009)

Amaranthus cruentus Oyelola et al. (2009)

Ni Helianthus annuus Zavoda et al. (2001), Turgut et al. (2004),  
and Claus et al. (2007)

Brassica juncea Kumar et al. (1995) and Zavoda et al. (2001)
Zea mays Claus et al. (2007)
Brassica napus Claus et al. (2007)

Cs Brassica oleracea Lasat et al. (1997)
Phaseolus acutifolius Lasat et al. (1997)
Brassica juncea Lasat et al. (1997)
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non-contaminated environment. The fundamental aim of the agronomic research 
is to enhance the growth and yield performance. But in general, no attention is 
paid on how to enhance metal accumulation in the tissues of crop species. However, 
with the merits of phytoextraction, it is necessary to develop suitable agronomic 
practices to optimize the growth of crop plants even under contaminated condi-
tions. In this context, research must be focused on agronomic practices such as 
crop establishment (planting season, spacing, establishment method), irrigation 
(frequency, amount, method), fertilization, weeding (method and frequency), and 
other cultural practices including mulching, pruning, pest and disease control, and 
harvesting (method and time) to increase the efficiency of phytoextraction. Among 
the different agronomic practices, the composition, frequency, and method of 
application of fertilizers need to be assessed thoroughly in order to find potential 
crop species. Furthermore, over dosage and/or frequent application of certain 
plant nutrients can limit/suppress the absorption of the target element. To make 
phytoextraction economically viable, the cost of fertilization should also be con-
sidered while formulating fertilizer mixtures.

Another factor that makes phytoextraction successful is the biomass and ability 
of plants to accumulate metals within the tissues (Blaylock et al. 1997; McGrath 
1998). Increased plant biomass can obviously take up and store more metals. Well-
developed root system can provide more surface area to take up metals and the 
aboveground components should be ready to store them. However, increase in aer-
ial and belowground biomass cannot be achieved simultaneously, because plants 
generally tend to develop more roots under stressed conditions, which negatively 
affect the aboveground biomass. Since conclusive reports on these aspects are still 
lacking, scientists need to address these issues seriously. The majority of phytoex-
traction research has focused on finding the ideal metal-accumulating plant species 
and the means by which metals can be removed from soils. Once any promising 
crop species is identified, genetic factors responsible for their hyperaccumulating 
nature should be investigated. Despite recent advances in biotechnology, little is 
known about the genetics of metal hyperaccumulators. Particularly, the heredity of 
relevant plant mechanisms, such as metal transport and storage (Lasa et al. 2000) 
and metal tolerance (Ortiz et al. 1992, Ortiz et al. 1995), must be better understood. 
Bioengineering of plants capable of cleaning up contaminated soils could be the 
next step that has been successfully performed for several species. Manipulation of 
genes involved in the biosynthesis of metal sequestering compounds and subse-
quent introduction and expression of the engineered genes into desirable plant spe-
cies might attract plant growers to adopt phytoremediation strategies (Prasad and 
Strzalka 2002). Meanwhile, Chaney et al. (1999) proposed the use of traditional 
breeding approaches for improving metal hyperaccumulator species and possibly 
incorporating significant traits, such as metal tolerance and uptake characteristics, 
into high-biomass-producing plants. Further, it is important to collect and preserve 
germplasm of accumulator species. The USDA-ARS Plant Introduction Station 
maintains a worldwide collection of B. juncea accessions that are known metal 
accumulators, and the seeds are distributed to public and private research institu-
tions at no cost (Prasad and Freitas 2003).
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19.8  Conclusion

Since it evidently does indicate several benefits, phytoextraction can be considered 
as one of the most preferred methods for restoring metal contaminated environments. 
In order to exploit the full potential of phytoextraction, a comprehensive understand-
ing is needed on as to how metal uptake, transport, and trafficking across plant mem-
branes and distribution, tolerance, sensitivity, etc., take place under different cultural 
practices. Furthermore, phytoextraction should be viewed as a long-term remedia-
tion solution because many cropping cycles may be needed over several years to 
reduce metals to acceptable regulatory levels. Taking all these into consideration, it 
could be concluded that phytoextraction with crop plants is still in the research and 
developmental phase, which requires further attention.
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