An alternative method to solve a system of one-variable linear congruences with prime moduli

Wijerathna P.A.S.D.* and Ranasinghe P.G.R.S.
Department of Mathematics, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka

We consider a system of linear congruences of a single variable with specific conditions and construct a new faster method to solve that system without using the Chinese remainder theorem. The concerned system of congruences is $\boldsymbol{a}_{\boldsymbol{i}} \boldsymbol{x} \equiv \boldsymbol{b}_{\boldsymbol{i}} \bmod \left(\boldsymbol{m}_{\boldsymbol{i}}\right)$, for $0<\boldsymbol{a}_{\boldsymbol{i}}, \boldsymbol{b}_{\boldsymbol{i}}<\boldsymbol{m}_{\boldsymbol{i}}$ for all $\boldsymbol{i}=1,2,3, \ldots, n$ with all $\boldsymbol{m}_{\boldsymbol{i}}$ values are prime. This system can be reduced to a single linear congruence of the same variable and it has a unique solution. The single congruence is

$$
\left(a_{1} M_{1}+a_{2} M_{2}+\cdots+a_{n} M_{n}\right) x \equiv\left(b_{1} M_{1}+b_{2} M_{2}+\cdots+\right.
$$

$\left.\boldsymbol{b}_{\boldsymbol{n}} \boldsymbol{M}_{\boldsymbol{n}}\right)(\bmod M)$ where $\boldsymbol{M}=\boldsymbol{m}_{\boldsymbol{1}} \times \boldsymbol{m}_{\mathbf{2}} \times \ldots \times \boldsymbol{m}_{\boldsymbol{n}}$ and $\boldsymbol{M}_{\boldsymbol{i}}=\frac{\boldsymbol{M}}{\boldsymbol{m}_{\boldsymbol{i}}}$ for all $i=1,2,3, \ldots, n$.
The unique solution of the single congruence is the solution of the above system.

Keywords: Chinese remainder theorem, linear congruence and prime modulo
*Corresponding author: shshikadilshan1234@gmail.com

