CONTENTS

page

Chapter 1 THEORETICAL BACKGROUND

1.1	Introd	duction		
1.2	Band Theory of Solids			5
	1.2.1	Band model f	for a semiconductor	5
	1.2.2	Conductance	and carrier generation in semiconductors	7
1.3	Photoe	electrochemica	l Energy Conversion with Semiconductors	9
	1.3.1	Photoionization and charge separation at		9
		the semicond	uctor/electrolyte interface	
	1.3.2	Formation of	the schottky barrier at the	12
		semiconducto	r/electrolyte interface	
1.4	Photoelectrical Devices			18
	1.4.1	Electrochemical photovoltaic cells (PECs)		18
	1.4.2	Theoretical aspects of PECs		22
		1.4.2.1	Generation of the photocurrent and	22
			the photovoltage	
		1.4.2.2	Solar to electrical conversion efficiency	30
		1.4.2.3	Parameters controlling the efficiency	32
			of PECs	
		1.4.2.4	Strategies employed to improve the efficiency	35
			of PECs	

1.5	Spectral Sensitization of Semiconductor Electrodes	
	1.5.1 light induced current generation in	36
	dye sensitized PECs	
1.6	Artificial Photosynthesis: Nanocrystalline Semiconductor	42
	Electrodes	
1.6.1	Quantum size effects in colloidal semiconductor particles	45
1.6.2	The effect of pH in colloidal particles	

Chapter 2 PHOTOCURRENT ENHANCEMENT IN LOW 48 BANDGAP SEMICONDUCTOR ELECTRODES 48 BY SURFACE ATTACHED DYES 48

		WITH NATURAL SENSITIZERS		
		BANDGAP SEMICONDUCTOR ELECTRODES		
Chapter 3		SENSITIZATION OF MICROPOROUS WIDE	86	
	2.3.2	Polynuclear metal cyanide films coated CdS thin films	71	
	2.3.1	Dye coated polycrystalline Cu ₂ O films	56	
2.3	Result	s and Discussion	56	
	2.2.2	Deposition of CdS thin films on Indium-Tin-Oxide glass	54	
	2.2.1	Deposition of Cu ₂ O films on copper substrate	51	
2.2.	Experi	mental	51	
2.1	Introdu	Introduction		

3.1 Introduction

86

3.2	Experimental		89
	3.2.1	Deposition of CuI on conducting glass substrate	89
	3.2.2	Deposition of TiO_2 films on conducting glass substrate	92
3.3	Results and discussion		
	3.3.1	Chlorophyll sensitized CuI photocathodes	95
	3.3.2	Metal complexes as photosensitizers on TiO ₂ photoanodes	109
References			119
Conclusion			128
Research publications arisen during the period of study			