University of Ruhuna-Faculty of Technology

Bachelor of Engineering Technology Level 1 (Semester 1) Examination, July 2017

Course Unit: TMS 1122 Chemistry of Materials

Time Allowed 2 hours
Answer all Four (04) questions

All symbols have their usual meaning	All	symbols	have	their	usual	meaning
--------------------------------------	-----	---------	------	-------	-------	---------

01	Answer	all	norta
VI.	Allswer	all	paris

(a) What are isotopes? Give some examples of isotopes.

(10 marks)

(b) Write the electronic configuration of each of the following elements and the most stable ions of them: Be, Na, Al, Cl, Ca

(15 marks)

- (c) Define the following.
 - (i) Hund's Rule
 - (ii) Aufbau Principle
 - (iii) Pauli Exclusion principle

(30 marks)

(d) (i) An electron in an atom can initially be assigned a set of four quantum numbers.

Name the four quantum numbers.

is recented of S in the edginal engine company,

(10 marks)

(ii) Using the definitions of above quantum numbers, derive the maximum numbers of electrons that can be found in the first, second, and third shell?

(15 marks)

- (e) What are the possible quantum numbers for the electron in the following electronic configurations?
 - (i) $3p^{1}$
 - (ii) 4f1

(20 marks)

02. Answer all parts

		Ministry to represent a core and a start agent	
(a)	When N	NaHCO ₃ is heated, it decomposes to Na ₂ CO ₃ , CO ₂ and H ₂ O.	
	(i)	Write a chemical equation to represent this decomposition.	
			(05 marks)
	(ii)	Balance the above equation and hence give the stoichiometry.	(10 marks)
	(iii)	If 42 g of NaHCO ₃ was heated, calculate the mass of each species of products. Molar mass of NaHCO ₃ = 84 g mol^{-1} , Na ₂ CO ₃ = 106 g mol^{-1} , mol^{-1} and H ₂ O = 18 g mol^{-1} .	obtained as CO ₂ =44 g
			(15 marks)
	sulphate	phur present in 0.1000 g of an organic compound was precipitated e. A precipitate of 0.1852 g of dry BaSO ₄ was obtained. Atomic mass of $S = 32 \text{ g mol}^{-1}$ and $S = 16 \text{ g mol}^{-1}$.	as barium Ba = 137 <i>g</i>
	(i)	Calculate the molar mass of BaSO ₄ .	
		Three Caretan and the Control of the Control	(05 marks)
	(ii)	How many moles of BaSO ₄ are precipitated?	
		and Exclosion principle by the Walter State of	(05 marks)
lear	(iii)	How many moles of S are present in the precipitated BaSO ₄ in above (ii)?	? (05 marks)
	(iv)	Calculate the mass of S.	
			(10 marks)
	(v)	Calculate the percentage of S in the original organic compound.	
		sing the definitions of above quantum numbers derive the mathinu	(15 marks)
		locations that can be found in the first, second, and dilink shell?	
	cm ³ of	g of NaOH was dissolved in water to make a 500.00 cm ³ NaOH solution. The prepared solution was diluted to 1000.00 cm^3 . Calculated the concentration. Atomic masses of Na = 23.0 g mol^{-1} and H = 1.0 g mol^{-1} .	
			(30 marks)

Patients of Cultume Formitte of Centrality,
Backeter of Regimewing Technology
Level 1 (Somitter 1) Examination 364, 2011

03. Answer all parts

- (a) Give the following definitions of an acid and a base:
 - (i) Arrhenius,
 - (ii) Bronsted-Lowry,
 - (iii) Lewis,

(12 marks)

(b) (i) Name the following acids and indicate whether they are strong or weak:

(08 marks)

(ii) Name the following bases and indicate whether they are strong or weak:

(06 marks)

- (c) (i) Write an equation for the hydrofluoric acid, HF(aq), dissociation in water
 - (ii) Write the equilibrium constant, K_a, expression for the dissociation of HF(aq) in water.

(10 marks)

- (d) Identify the acid, base, conjugate acid and conjugate base for each of the following.
 - (i) $PhCOOH(aq) + H_2O(1) \rightleftharpoons H_3O^+(aq) + PhCOO^-(aq)$
 - (ii) $H_2S(g) + H_2O(1) \rightleftharpoons H_3O^+(aq) + HS^-(aq)$
 - $(iii)NH_3(g) + H_2O(1) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$
 - (iv) $HF(aq) + HSO_3(aq) \rightleftarrows F(aq) + H_2SO_3(aq)$

(16 marks)

- (e) Calculate the pH of each of the following solutions and classify the solution as acidic or basic:
 - (i) Lemon juice: $[H_3O^+] = 1.1 \times 10^{-2} M$
 - x 10 M
- (ii) Soft drink: $[H_3O^+] = 2.5 \times 10^{-4} M$

(iii) Urine: $[H_3O^+] = 1.2 \times 10^{-6} M$

- (iv) Blood: $[H_3O^+] = 3.9 \times 10^{-8} M$
- (v) Antiseptic: $[H_3O^+] = 1.2 \times 10^{-10} M$
- (vi) Beer: $[H_3O^+] = 5.0 \times 10^{-3} M$
- (vii) Coffee: $[H_3O^+] = 7.9 \times 10^{-6} M$
- (viii) Detergent: $[H_3O^+] = 3.2 \times 10^{-11} M$

(24 marks)

(f) Write a balanced net ionic equation for the reaction between solutions of HNO2 and KOH.

(02 marks)

(g) (i) What is the difference between nuclear fusion and nuclear fission? (04 marks) (ii) Balance each of the following nuclear equations and indicate the type of nuclear reaction (α-emission, β-emission, fission, fusion, or "other" (I) $? + {}_{3}^{6}Li \rightarrow 2{}_{2}^{4}He$ (II) $^{210}_{84}Po \rightarrow ^{4}_{2}He + ?$ (III) ${}^{235}_{92}U + {}^{1}_{0}n \rightarrow {}^{72}_{30}Zn + ? + 4{}^{1}_{0}n$ (IV) $^{234}_{90}Th \rightarrow ? + ^{234}_{91}Pa$ $(V))_{29}^{60}Cu \rightarrow {}_{29}^{60}Ni + ?$ month one work replication a southern that a block are worthed and (15 marks) (iii) Name three uses of nuclear reactions (03 marks) 04. Answer all parts (a) (i) Define the term "ionization energy". (10 marks) (ii) Give three factors that affect the ionization energy of an element. (10 marks) (iii) Mention the relation of the above factors with the ionization energy. allowers to also not easy engineers the line engagers and the set (10 marks) (iv) 'The first ionization energy of nitrogen is higher than that of oxygen'. Explain briefly this statement considering the electronic configurations of N and O. (20 marks)

(63 tam (1))

(b) Distinguish between the elementary reactions and complex reactions.

(20 marks)

- (c) Sketch the graphs of the variation of concentration with time for:
 - (i) zero order, and the self-dependent and the self-dependent of the self-dependent of the
 - (ii) first order and
 - (iii) second order reactions

(15 marks)

(d) The reaction of nitric oxide with hydrogen at 1280 °C is $2NO(g) + 2H_2(g) \longrightarrow N_2(g) + 2H_2O(g)$

It is found experimentally that the order of the reaction with respect to the H₂ is 1 and with respect to the NO is 3.

(i) Give an expression for the rate law.

(10 marks)

(ii) What is the overall order of the reaction?

(05 marks)

	N &	4 6	Beryllium 9.01	12	60	88	Ca Sc Ti	Calcium Scandium Titanium 40.08 44.96 47.87	38 39 × 77	m Yttrium Zi 88.91	56 57 72 Ra I a Hf	Lanthanum H	88 89 104 PC 104	Actinium Rul	7 / · · · · · · · · · · · · · · · · · ·		If this number is in parentheses, then	it refers to the atomic mass of the most stable isotope.	
					4	+	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ium Vanadium 87 50.94	14 N	Niobium 92.91	73	100	4 105 dG	<u> </u>		8 8	Cerlum 140.12	8 F	Thorium
		==	Sodium	22 99	•	99	\displaystar	Chromium Mr 52.00	24 N	Ę	4×	2 4	-	E	·	8 9	Presendymium Ne 140.91	9 Q	Ę.
	5	Atomi		- Mera	in the second	+		Manganese 54.94	£ 43		25 8	E T		. E _		8 N	Neodymium Pro 144.24	83 =	Uranium Ne
		Atomic number	Element symbol	Average atomic mas	60	-	Fe S	1ron Cc 55.85 56	4 B	m Rutherium Filto 101.07 10	92 Os	Osmium Iric 190.23 19		F		Pm S	(145) 15	83 7	ptunium Plut
				* SSB		-	38			Fhodium Pall 102.91 10		EN	109	Meitherium (268)			0.36 15	76 0	Donium Ame
					11 01	rh	SE			Palledium Silver 106.42 107.87	-	Ém				Eu G	1.96 157	95 Am	wicium Our
	: 44 : 13 : 13.					-	Cu Zu	TANGLANG.	-	ver Cadmium 7.87 112.41		Gold Merc 196.97 200.		u e e		Gd Tb	.25 158.	6 97 12 97	ium Berte
	\$ &	က က	Boror 10.81	13 A1	150					ium Indium .41 114.82		F 01				66 Dy	um Dyspros 93 162.5	88	flum Californium
193 W 1	4 4				_	4				Tin 2 118.71		m Lead 8 207.2				£94	num Holmium 0 164.93	8 1	um Eneteiniu
	5 AS			ස 			As			Antimony 121.76				•		<u>я</u>	167.26	5 T	m Fermium
	5 A	∞ O	Oxygen 16.00	ė u		-			52 Te	Tellurium 127.60	25 Q	Polonium (209)				E E			2
	± ₹	ைட	Fluorine 19.00	בס	Chlorine	35.45	3 00	Bromine 79.90	- 23	lodine 126.90	88 X	Astatine (210)				7. 9	173.04	20 N	~
85 8 8 4 F	Helium 4.00	S 9	Neon 20.18	18 Ar	Argon	28.32	호	Krypton 83.80	Xe St	Xenon 131.29	8 E	Radon (222)				בא	174.97	103	4