

University of Ruhuna - Faculty of Science Bachelor of Science General Degree

Level I (Semester I) Examination - December 2020

Subject: Mathematics Course Unit: MAT111B / MAM1113 (Vector Analysis) Answer ALL Questions

1. (a) Let ℓ_1 and ℓ_2 be two non intersecting straight lines in space. Consider the arbitrary points $P_1(x_1,y_1,z_1)$ on ℓ_1 and $P_2(x_2,y_2,z_2)$ on ℓ_2 having position vectors \underline{r}_1 and \underline{r}_2 respectively with respect to an origin O. Show, apart from sign, that the shortest distance d between the two lines is given by

 $d = \left| \frac{(\underline{r_2} - \underline{r_1}) \cdot (\underline{a} \times \underline{b})}{|\underline{a} \times \underline{b}|} \right|,$ where $\underline{a} = a_1 \underline{i} + a_2 \underline{j} + a_3 \underline{k}$ and $\underline{b} = b_1 \underline{i} + b_2 \underline{j} + b_3 \underline{k}$ are direction vectors of ℓ_1 and ℓ_2 respectively.

Consider the two straight lines

 ℓ_1 : passes through the point (0,9,2) with direction vector (3,-1,1)

 ℓ_2 : passes through the point (-6, -5, 10) with direction vector (-3, 2, 4)

The position vectors of P_1 and P_2 are $-3\underline{i} - 7\underline{j} + 6\underline{k}$ and $3\underline{i} + 8\underline{j} + 3\underline{k}$ respectively.

[5+5](i) Write down the parametric vector equations of ℓ_1 and ℓ_2 .

(ii) Show that the shortest distance d between the two lines is $3\sqrt{30}$.

(b) A plane intersects the Ox, Oy and Oz axes, respectively, at (a,0,0), (0,b,0) and (0,0,c), where O is the origin of the coordinate system. Find

[25] (i) a unit normal vector to this plane.

(ii) the perpendicular distance between the origin O and this plane. [05]

Using the fact that the scalar triple product of three coplanar vectors is equal to zero, show that the equation of this plane can be written as

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1.$$

[20]

[20]

[20]

2. (a) Find the scalar function $\phi(x, y, z)$ given that $\nabla \phi = 2xyz\underline{i} + (x^2z + 1)\underline{j} + x^2y\underline{k}$. [35]

[10](b) State the Green's theorem in the plane.

Verify the above theorem for

$$\int_C (y - \sin x) \, dx + \cos x \, dy,$$

where C is the triangle with vertices $(0,0), (\pi/2,0)$, and $(\pi/2,1)$.

[55]

Time: Two (02) Hours

- 3. State the divergence theorem of Gauss. [10] Verify the divergence theorem for the vector field $\underline{F} = 2x^2y\underline{i} y^2\underline{j} + 4xz^2\underline{k}$ taken over the closed region D in the first octant bounded by $y^2 + z^2 = 9$ and the planes x = 0, y = 0, z = 0 and x = 2. [90]
- 4. State the Stokes' theorem. [10] Verify the Stokes' theorem for the vector field $\underline{F} = (x^2 + y^2 4y)\underline{i} + 3xy\underline{j} + (2xz + z^2)\underline{k}$ taken over the surface S of the hemisphere $x^2 + y^2 + z^2 = 16$ above the xy-plane. Here, C is the boundary of the hemisphere. [90]