University of Ruhuna

Faculty of Science

December 2020

BSc/BCS General Degree Level I (Semester I) Examination

Subject:

Mathematics

Course Unit:

MAT112δ Differential Equations

Answer	All	Ques	tions
--------	-----	------	-------

Time: One hour

1. Solve the differential Equation $x \frac{dy}{dx} + 2y = x^3y^2 \sin(x)$.

If $y(\frac{\pi}{2}) = 1$ find the solution of the above differential equation.

[20 marks]

2. Let $p = \frac{dy}{dx}$. Find the general solution and the singular solution of the differential equation $y = xp - p(\ln p - 1)$.

[20 marks]

- 3. Consider the differential equation $2xy dx + (y^2 x^2 4)dy = 0$.
 - a. Check whether the above differential equation is exact or not.
 - b. Solve the above differential equation using a suitable method.

[25 marks]

4. Let $D = \frac{d}{dt}$ be the differential operator with respect to the independent variable t. Solve the following simultaneous differential equations for x(t) and y(t) using D operators.

$$(D^2 - 3)y - x = -e^{-t}$$
(1)

$$Dx + 2y = 0 \qquad \dots (2)$$

[35 marks]

	End	of the	question	paper	
,	LIIG	OI CITC	question	paper	

University of Ruhuna

Faculty of Science

December 2020

BSc/BCS General Degree Level I (Semester I) Examination

Subject:

Mathematics

Course Unit:

MAT112δ Differential Equations

Answer All Questions

Time: One hour

1. Solve the differential Equation $x \frac{dy}{dx} + 2y = x^3y^2 \sin(x)$.

If $y(\frac{\pi}{2}) = 1$ find the solution of the above differential equation.

[20 marks]

2. Let $p = \frac{dy}{dx}$. Find the general solution and the singular solution of the differential equation $y = xp - p(\ln p - 1)$.

[20 marks]

- 3. Consider the differential equation $2xy dx + (y^2 x^2 4)dy = 0$.
 - a. Check whether the above differential equation is exact or not.
 - b. Solve the above differential equation using a suitable method.

[25 marks]

4. Let $D = \frac{d}{dt}$ be the differential operator with respect to the independent variable t. Solve the following simultaneous differential equations for x(t) and y(t) using D operators.

$$(D^2 - 3)y - x = -e^{-t}$$
(1)

$$Dx + 2y = 0 \qquad \dots (2)$$

[35 marks]

 End	of	the	auestion	paper	
Lina of till	LIIC	question	paper		