University of Ruhuna

Bachelor of Science General Degree - Level II (Semester I) Examination - February 2022

Subject: Mathematics

Course Unit: MAT 212β (Real Analysis I) Time: Two (02) Hours

Answer ALL questions.

- 1. a) If the n^{th} partial sum of the series $\sum_{n=1}^{\infty} a_n$ is given by $S_n = 3 \frac{n}{2^n}$, find a_n for n > 1. Is the series $\sum_{n=1}^{\infty} a_n$ convergent? Justify your answer. [20 Marks]
 - b) Using the comparison test or otherwise show that the series $\sum_{n=1}^{\infty} \frac{1}{n^3 + n^2 \cos(n)} \text{ converges.}$ [15 Marks]
 - c) Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be two series of positive terms and and suppose that $\frac{a_n}{b_n} \longrightarrow L$, as $n \longrightarrow \infty$, where $0 < L < \infty$. Prove that if $\sum_{n=1}^{\infty} b_n$ converges then $\sum_{n=1}^{\infty} a_n$ converges. What can you say about the convergence when L = 0?
 - d) Determine whether the series $\sum_{n=1}^{\infty} \sin\left(\frac{1}{\sqrt{n}}\right)$ converges or diverges. [25 Marks
- 2. a) (i) State clearly the integral test for the convergence of the series $\sum_{n=1}^{\infty} a_n$ of positive terms.
 - (ii) Test the convergence of the series $\sum_{n=1}^{\infty} ne^{-\frac{n}{2}}$. [40 Marks]
 - b) Using a suitable test determine whether the series $\sum_{n=1}^{\infty} \frac{n^{1-3n}}{4^{2n}}$ converges or diverges.

c) Consider the series given by

$$\frac{2\cdot 4}{3\cdot 5}+\frac{2\cdot 4\cdot 6}{3\cdot 5\cdot 7}+\frac{2\cdot 4\cdot 6\cdot 8}{3\cdot 5\cdot 7\cdot 9}+\cdots.$$

- (i) Write down the general term a_n , $n \ge 1$ of the series.
- (ii) Show that the ratio test is inconclusive for determining the convergence of the series $\sum_{n=1}^{\infty} a_n$.
- (iii) Test the convergence of the series $\sum_{n=1}^{\infty} a_n$ using Raabe's test. [40 Marks]
- 3. a) Let r be a real number. For which values of r is the series $\sum_{n=1}^{\infty} (-1)^n \frac{n^2}{n^r + 2}$ absolutely convergent or conditionally convergent. (No justification is required).

 [20 Marks]
 - b) Suppose that the function f(x) has the power series representation $f(x) = \sum_{n=1}^{\infty} c_n (x-b)^n, \ b \in \mathbb{R}.$
 - (i) Using the ratio test discuss the radius of convergence and interval of convergence of the power series.
 - (ii) Show that if the radius of the power series is R then the radius of the power series of f'(x) is also R. [35 Marks]
 - c) Consider the power series $\sum_{n=1}^{\infty} \frac{(3x-2)^n}{n3^n}.$
 - (i) Find the radius of convergence R of the series.
 - (ii) Find the interval of convergence I of the series and determine whether it converges absolutely or conditionally at each point of I. [45 Marks]
 - 4. a) Let f be a bounded function defined on [a,b] and let $P = \{x_0, x_1, x_2, \dots, x_n\}$ be a partition on [a,b].
 - (i) Define L(P,f) and U(P,f) in the usual notation.
 - (ii) Define Lower Riemann Integral and Upper Riemann Integral of f on [a, b].
 - (iii) State the definition f is integrable over [a, b] and $\int_a^b f \, dx$ using the terms in part a(ii) above. [25 Marks]

b) Let $f:[-1,1] \longrightarrow \mathbb{R}$ be defined by

$$f(x) = \begin{cases} -x & \text{if } x \in [-1, 0) \\ -x + 1 & \text{if } x \in [0, 1]. \end{cases}$$

(i) Sketch the graph of f(x).

[10 Marks]

- (ii) Using the partition $P = \{-1, -\frac{1}{2}, 0, \frac{1}{3}, 1\}$ of [-1, 1] show that $U(P, f) = \frac{55}{36}$.
- (iii) Suppose that a sequence of partition of [-1,1] is given by $P_n = \left\{x_i = -1 + \frac{i}{n}\right\}_{i=0}^{2n}$. Considering the partition as two parts for $i=0,1,\cdots,n$ and $i=n+1,n+2,\cdots,2n$ separately, show that

$$L(P_n, f) = \sum_{i=1}^{2n} (-x_i) \frac{1}{n} + \sum_{i=n+1}^{2n} \frac{1}{n}.$$

and hence obtain an expression for $L(P_n, f)$ in terms of n.

Show that
$$\int_{-1}^{1} f(x) dx = 1$$
.

[30 Marks]

c) Let f be a function defined on [a, b]. State (without proof) the Riemann Criterion for the Riemann integrability of f on [a, b]. [10 Marks]