University of Ruhuna

Bachelor of Science General Degree Level III (Semester I) Examination - November 2021

Subject: Mathematics Course Unit: MAT311 β (Group Theory)

2.

Time : Two (02) Hours

Answer <u>All</u> Questions.

1. a) Consider the set $G' = \{(a, b) | a, b \in \mathbb{R}, a \neq 0\}$ and define * on G' by

$$(a, b) * (c, d) = (ac, ad + b)$$

	(i)	Show that G' forms a group under the operation $*$.	[50 marks]
	(ii)	Does G' form an abelian group? Justify your answer.	[10 marks]
b)		Let H be a non-empty subset of G . Show that H is a subgroup of G if and only if $ab^{-1} \in H$ for all $a, b \in H$. Show that the set $H = \{(1, x) x \in \mathbb{R}\}$ is a subgroup of the group G' . If H is a subgroup of G then show that the inverse of an element $a \in H$ is the same as the inverse of the same element regarded as	
		an element of the group G .	[10 marks]
a)	(i)	Let $\alpha = (1 \ 3 \ 2)$ and $\beta = (4 \ 2 \ 1 \ 3)$. Find $\alpha\beta^{-1}$ and $\alpha^2\beta\alpha^{-1}$.	[30 marks]
,		Write the permutation $\theta = (1 \ 4 \ 2)(2 \ 3 \ 5)(1 \ 3 \ 4)$ as a product of disjoint cycles.	
		Is θ odd or even permutation?	[20 marks]
b)	(i)	Let H be a subgroup of the group G . Show that G is equal to the union of all right cosets of H in G .	[10 marks]
	(ii)	Consider the group $\mathbb{P}_3 = \{I_3, (1 \ 2), (1 \ 3), (2 \ 3), (1 \ 2 \ 3), (1 \ 3 \ 2)\}$ under composition of mapping. Let $H = \{I_3, (1 \ 2)\}$ be a subgroup of	P.
		Find all right cosets of H in \mathbb{P}_3 .	[30 marks]
	(iii)	Show that set \mathbb{P}_3 is equal to the union of all right cosets of H in \mathbb{P}_3 .	[10 marks]

- a) Show that a subgroup H of a group G is normal if and only if $g^{-1}hg \in H$ 3. [20 marks] for all $g \in G$ and $h \in H$.
 - b) The map $f : \mathbb{R} \to \mathbb{R}$ is defined by

$$f_{ab}(x) = ax - b,$$

where $a, b \in \mathbb{R}$ and $a \neq 0$. Let $G = \{f_{ab} | a, b \in \mathbb{R}, a \neq 0\}$ be a group under the composition of mappings.

- (i) Find the identity element of G and the inverse of $f_{ab} \in G$. [30 marks]
- (ii) Show that $H = \{f_{1b} | b \in \mathbb{R}\}$ is a normal subgroup of G. [30 marks]
- c) Prove the following for any two subgroups H and K of a group G.
 - (i) $H \cap K$ is a subgroup of G. [10 marks] [10 marks]
 - (ii) If H is normal in G then $H \cap K$ is normal in K.
- a) Let G and G' be two groups and $f:G\to G'$ be a homomorphism. 4. Define Ker f, the kernel of f. [10 marks] Prove that f is one-one if and only if $Kerf = \{e\}$, where e is the identity of G. [30 marks] b) Let $(\mathbb{R}^+, .)$ be a multiplicative group of positive real numbers and $(\mathbb{R}, +)$ be a additive
 - group of real numbers.
 - (i) Show that the map $f : \mathbb{R}^+ \to \mathbb{R}$ defined by

$$f(x) = \log_{10}(x)$$

	is a homomorphism.	[10 marks]
(ii)	Find Kerf.	[20 marks]
	Hence show that f is one-one.	[10 marks]
(iii)	Is f an isomorphism? Justify your answer.	[20 marks]