University of Ruhuna Bachelor of Science General Degree Level III (Semester I) Examination - November 2021

Subject: Applied Mathematics
Course Unit: AMT313 (Mathematical Methods in Physics and Engineering)
Time: Two (02) Hours
Answer All Questions
(1) (i) In the usual notation, prove that
(a) $\mathscr{L}\left\{e^{a t} f(t)\right\}=F(s-a)$, and
(b) if $g(t)=\left(\begin{array}{ll}f(t-a), & t>a \\ 0, & t<a\end{array}\right.$ then $\mathscr{L}[g(t)]=e^{-a s} F(s)$.

Obtain the Laplace transforms of the following functions:

$$
\begin{aligned}
& g(t)=e^{4 t} \sin 2 t+e^{-3 t} \sinh 3 t, \\
& f(\mathrm{t})= \begin{cases}0 & \text { if } t<2 \\
t^{2} & \text { if } \mathrm{t} \geq 2\end{cases}
\end{aligned}
$$

(ii) Define the Inverse Laplace transform $\mathrm{f}(\mathrm{t})$ of $\mathrm{F}(\mathrm{s})$, denoted by $\mathscr{L}^{-1}\{\mathrm{~F}(\mathrm{~s})\}$.

Find
(a) $\mathscr{L}^{-1}\left\{\frac{5 s}{s^{2}+4 s+29}\right\}$,
(b) $\mathscr{L}^{-1}\left\{\frac{\left(s-2 s e^{-2 s}\right)}{s^{2}+9 s}\right\}$,
(c) $\mathscr{L}^{-1}\left\{\frac{s}{\left(s^{2}+9\right)^{3}}\right\}$.
(2) (i) Show that,

$$
\mathscr{L}\left[f^{\prime \prime}(t)\right]=s^{2} \mathscr{E}[f(t)]-s f(0)-f^{\prime}(0)
$$

in the usual notation.
Solve the following Initial Value Problem

$$
y^{\prime \prime}-y^{\prime}=\cos (3 t) ; y(0)=-9 \text { and } y^{\prime}(0)=0
$$

by using the Laplace Transform.
(ii) Use the Laplace transform method to solve the following system of differential equations for $\mathrm{x}_{1}(\mathrm{t})$ and $\mathrm{x}_{2}(\mathrm{t})$

$$
\begin{aligned}
& x_{1}^{\prime}=5 x_{1}-2 x_{2}+3 \\
& x_{2}^{\prime}=3 x_{1}+t
\end{aligned}
$$

subject to the initial conditions

$$
x_{1}(0)=-1 \text { and } x_{2}(0)=1
$$

(3) (i) The Fourier series of a periodic function $f(t)$ with period 2 T is given by

$$
f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi t}{T}+\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi t}{T}
$$

where a_{0}, a_{n} and b_{n} are

$$
a_{0}=\frac{1}{T} \int_{-T}^{T} f(t) d t, \quad a_{n}=\frac{1}{T} \int_{-T}^{T} f(t) \cos \frac{n \pi t}{T} d t \quad \text { and } \quad b_{n}=\frac{1}{T} \int_{-T}^{T} f(t) \sin \frac{n \pi t}{T} d t .
$$

Find the Fourier series expansion of the function defined by

$$
\begin{aligned}
& f(t)=\left\{\begin{array}{cc}
4 t & 0<t<1 \\
1 & 1 \leq t<2
\end{array}\right. \\
& f(t+2)=f(t)
\end{aligned}
$$

Show that

$$
f(1)=\frac{5}{2} .
$$

Hence, deduce that

$$
\begin{equation*}
\sum_{m=1}^{\infty} \frac{1}{(2 m-1)^{2}}=\frac{\pi^{2}}{8} \tag{60Marks}
\end{equation*}
$$

(ii) The definition of the Gamma function is given by

$$
\Gamma(\lambda+1)=\int_{0}^{\infty} e^{-t} t^{\lambda} d t \text { for all } \lambda>1
$$

Obtain the recursive formula for the Gamma function as

$$
\Gamma(\lambda+1)=\lambda \Gamma(\lambda)
$$

Hence, evaluate the integral

$$
\int_{0}^{\infty} e^{-4 x^{2}} x^{5} d x
$$

(4) (i) Show that the separable solution of the one dimensional heat equation

$$
\frac{\partial w}{\partial t}=c^{2} \frac{\partial^{2} w}{\partial x^{2}}
$$

can be written, in the usual notation, in the form of

$$
w(x, t)=\sum_{n=0}^{\infty} B_{n} e^{-\left(\frac{c n \pi}{L}\right)^{2} t} \sin \left(\frac{n \pi x}{L}\right)
$$

along with the boundary conditions $w(0, t)=0$, and $w(L, t)=0$ for all time t.
Assuming that w is separable in x and t, solve the following one dimensional heat equation:

$$
\frac{\partial w}{\partial t}=3 \frac{\partial^{2} w}{\partial x^{2}}, \quad 0<x<\pi, \quad t>0
$$

under the conditions

$$
\begin{aligned}
& w(0, t)=w(\pi, t)=0, \quad t>0 \\
& w(x, 0)=2 \sin x+3 \sin 3 x-4 \sin 4 x, \quad 0<x<\pi
\end{aligned}
$$

(ii) The Beta function is defined as

$$
B(p, q)=\int_{0}^{1} x^{p-1}(1-x)^{q-1} d x \text { for any real numbers } p, q>0
$$

Using the above definition and the relations:

$$
B(p, q)=\int_{0}^{\infty} \frac{x^{p-1}}{(1+x)^{p+q}} d x=\frac{\Gamma(p) \Gamma(q)}{\Gamma(p+q)},
$$

evaluate the following integrals:
(a) $\int_{0}^{3} x^{2} \sqrt{3-x} d x$.
(b) $\int_{0}^{\infty} \frac{x^{2}\left(1-x^{3}\right)}{(1+x)^{8}} d x$.
(40 Marks)

