University of Ruhuna Bachelor of Science Special Degree Level I (Semester I) Examination –November 2021

Subject: Mathematics

Course Unit: MSP3144 (Mathematical Methods in Physics and Engineering)

Time: Three (03) Hours

Answer All Questions

(1) (i) Prove, in the usual notation, that

(a)
$$\mathcal{L}\lbrace e^{at} f(t) \rbrace = F(s-a)$$
 and

(b) If
$$g(t) = f(t-a)u(t-a)$$
 then $\mathcal{L}[g(t)] = e^{-as}F(s)$.

(20) Marks

(ii) Find the Laplace transform of the following:

(a)
$$f(t) = e^{4t} \sin 2t + e^{-3t} \sinh 3t$$

(b)
$$f(t) = \begin{cases} 0 & \text{if } t < 2 \\ t^2 & \text{if } t \ge 2 \end{cases}$$

(20) Marks

(iii) Find the following inverse Laplace Transforms:

(a)
$$\mathcal{K}^{-1}\left\{\frac{5s}{s^2+4s+29}\right\}$$

(b)
$$\mathcal{K}^{-1}\left\{\frac{(s-2se^{-2s})}{s^2+9s}\right\}$$
.

(c)
$$\mathcal{K}^{-1}\left\{\frac{s}{(s^2+9)^2}\right\}$$
.

(30) Marks

(iii) Using the Laplace transforms, find the solution of the initial value problem

$$y'' - y' = cos(3t); y(0) = 9, y'(0) = 0.$$

(30) Marks

(2) (i) Let f(t) be defined on the interval (-T, T) and out side this interval f(t) satisfies f(t + 2T) = f(t). The Fourier series of f(t) is given by

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi t}{T} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi t}{T};$$

where a_0 , a_n and b_n are given by

$$a_0 = \frac{1}{T} \int_{-T}^{T} f(t)dt, \quad a_n = \frac{1}{T} \int_{-T}^{T} f(t) \cos \frac{n\pi t}{T} dt \quad \text{and} \quad b_n = \frac{1}{T} \int_{-T}^{T} f(t) \sin \frac{n\pi t}{T} dt.$$

(a) Find the Fourier series of the function

$$f(t) = \begin{cases} 4t & 0 < t < 1 \\ 1 & 1 \le t < 2 \end{cases}$$
$$f(t+2) = f(t).$$

(30) Marks

(b) Hence, deduce that

with

$$\sum_{m=1}^{\infty} \frac{1}{(2m-1)^2} = \frac{\pi^2}{8}.$$

(20) Marks

(ii) The definitions of Gamma and Beta functions are given by

$$\Gamma(n+1) = \int_{0}^{\infty} e^{-t} t^{n} dt \quad \text{for all } n > 1 \quad \text{and}$$

$$B(p,q) = \int_{0}^{1} x^{p-1} (1-x)^{q-1} dx \text{ for any real numbers } p,q > 0$$
 respectively.

Using the above definitions, and the relations

$$B(p,q) = \int_{0}^{\infty} \frac{x^{p-1}}{(1+x)^{p+q}} dx = 2 \int_{\phi=0}^{\frac{\pi}{2}} \cos^{2p-1} \phi \sin^{2q-1} \phi d\phi = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$$

evaluate the following integrals:

(a)
$$\int_{0}^{\infty} e^{-4x^2} x^5 dx$$
. (b) $\int_{0}^{3} x^2 \sqrt{3-x} dx$.

(c)
$$\int_{\phi=0}^{\frac{\pi}{2}} \cos^3 \phi \sin^5 \phi \, d\phi. \qquad (d) \int_{0}^{\infty} \frac{x^2 (1-x^3)}{(1+x)^8} dx.$$

(50) Marks

(3) (i)

(a) Show that the separable solution of the one-dimensional heat equation

$$\frac{\partial w}{\partial t} = c^2 \frac{\partial^2 w}{\partial x^2}$$

can be written, in the usual notation, in the form of

$$w(x,t) = \sum_{n=0}^{\infty} B_n e^{-\left(\frac{cn\pi}{L}\right)^2 t} \sin(\frac{n\pi x}{L})$$

subject to the boundary conditions w(0,t) = 0, w(L,t) = 0 for all time t.

(25) Marks

(b) Assuming that w is separable in x and t, solve the following one-dimensional heat equation:

$$\frac{\partial w}{\partial t} = 3 \frac{\partial^2 w}{\partial x^2} \ , \quad 0 < x < \pi \ , \ t > 0,$$

under the conditions

$$w(0,t) = w(\pi,t) = 0, t > 0,$$

$$w(x,0) = 2\sin x + 3\sin 3x - 4\sin 4x$$
, $0 < x < \pi$.

(25) Marks

(ii) Consider the inhomogeneous one-dimensional wave equation given by

$$\frac{\partial^2 w}{\partial t^2} = 4 \frac{\partial^2 w}{\partial x^2} + 2 \sin\left(\frac{\pi x}{L}\right), \quad 0 < x < L$$

subject to the boundary conditions w(0,t) = 0, w(L,t) = 0 for all time t and initial conditions w(x,0) = 0 and $\frac{\partial w}{\partial t}(x,0) = 0$.

(a) Taking the Laplace transform of both side and using the initial conditions, obtain the following equation

$$\frac{\partial^2 W(x,s)}{\partial x^2} - \frac{s^2}{4} W(x,s) = -\frac{1}{2s} \sin\left(\frac{\pi x}{L}\right), \quad 0 < x < L \text{ where } W(x,s) = \mathcal{K}(w(x,t)).$$

(20) Marks

(b) Show that the solution for the equation in part (a) is in the form

$$W(x,s) = C_1 e^{\frac{s}{2}x} + C_2 e^{-\frac{s}{2}x} + \frac{2}{s} \frac{\sin\left(\frac{\pi x}{L}\right)}{\left(s^2 + \frac{4\pi^2}{L^2}\right)}, \quad 0 < x < L.$$
(10) Marks

(c) Using the boundary conditions show that $C_1 = C_2 = 0$.

(10) Marks

(d) Taking the inverse Laplace transform for the solution in part (b) obtain the solution to the one-dimensional wave equation

$$w(x,t) = \frac{L^2}{2\pi^2} \sin(\frac{\pi x}{L}) \left(1 - \cos\frac{2\pi}{L}t\right) \quad t > 0.$$

(10) Marks

(4) (i) Show that y = 3 is a particular solution of the Riccati Differential equation

$$\frac{dy}{dx} = y^2 - y - 6.$$

Substituting $y = 3 + \frac{1}{z}$ solve the above differential equation.

(25) Marks

(ii) The generating function of the Legendre polynomials $P_n(x)$ is defined by

$$G(x,t) = \frac{1}{\sqrt{1 - 2xt + t^2}} = \sum_{n=0}^{\infty} t^n P_n(x).$$

Show that

$$\sum_{n=0}^{\infty} t^n P_n(0) = \sum_{m=0}^{\infty} (-1)^m \frac{(2m)!}{2^{2m} (m!)^2} t^{2m}.$$

Deduce that

$$P_{2m}(0) - P_{2(m+1)}(0) = (-1)^m \frac{(2m)!}{2^{2m} (m!)^2} \left[1 + \frac{2m+1}{2(m+1)} \right].$$

$$\left\{ \text{You may assume that } (1+t)^{-\frac{1}{2}} = \left(\sum_{m=0}^{\infty} (-1)^m \frac{(2m-1)(2m-3)...3.1}{2^{2m} (m!)} t^{2m} \right) \right\}$$

(25) Marks

(iii) The Bessel function $J_n(x)$ satisfies the equation:

$$\frac{d}{dx}[x^{-n}J_n(x)] = -x^{-n}J_{n+1}(x).$$

Using the above equation, show that

(a)
$$\int J_1(x)dx = -J_0(x) + Const.$$

(b)
$$\int J_3(x)dx = -J_2(x) - 2x^{-1}J_1(x) + Const.$$

(25) Marks

(iv) The Hermit polynomial $H_n(x)$ of degree n is defined by

$$e^{2tx-t^2} = \sum_{n=0}^{\infty} \frac{H_n(x)t^n}{n!}$$
, for all integral values of ν and all real values of x .

Prove, in the usual notation, that

(a)
$$H_n(x) = (-1)^k \frac{n!}{k!} \frac{(2x)^{n-2k}}{(n-2k)!}$$
.

(b)
$$H_{2m}(0) = (-1)^m 2^{2m} \left(\frac{1}{2}\right)_m$$
.

(25) Marks

