

UNIVERSITY OF RUHUNA FACULTY OF SCIENCE

BACHELOR OF SCIENCE SPECIAL DEGREE IN MATHEMATICS LEVEL I (SEMESTER I) END SEMESTER EXAMINATION — OCTOBER, 2021

SUBJECT: MATHEMATICS

COURSE UNIT: MSP 3184 - MEASURE THEORY

Answer ALL Questions

Time Allowed: 3 hours

- 1. (a) Let $A \subseteq \mathbb{R}$ be such that $m^*(A) = 0$. Show that $m^*(B) = m^*(A \cup B) = m^*(B \setminus A)$ for every $B \subseteq \mathbb{R}$. [20 points]
 - (b) Let (X, Θ, μ) be a measure space. Let $E, F \in \Theta$ be such that $E \subseteq F$. Is $\mu(F \setminus E) = \mu(F) - \mu(E)$? Justify your answer. [20 points]
 - (c) Let $X = \{a, b, c, d\}$, where a, b, c and d are all distinct. Let $\mathcal{C} = \{\emptyset, X, \{b\}, \{a, c\}\}$. Write down $\sigma(\mathcal{C})$, the σ algebra generated by \mathcal{C} . [20 points]
 - (d) Let $f:[0,1] \to \mathbb{R}$. Suppose that the set $\{x \in [0,1] \mid f(x) = \alpha\}$ is measurable for every $\alpha \in \mathbb{R}$. Is f measurable? Justify your answer. [20 points]
 - (e) Let $f:[0,1]\to\mathbb{R}$ be defined by

$$f(x) = \begin{cases} 3\sqrt{x}; & \text{if } x \text{ is irrational,} \\ 0; & \text{if otherwise.} \end{cases}$$

Find $\int f dm$.

[20 points]

- 2. (a) Define the Lebesgue outer measure, $m^*(E)$, of a subset E of \mathbb{R} and the Lebesgue measurable subsets of \mathbb{R} . [10+10 points]
 - (b) Let $A \subseteq \mathbb{R}$ and Let $\{E_n\}$ be a sequence of mutually disjoint Lebesgue measurable subsets of \mathbb{R} .
 - (i) By mathematical induction or otherwise, show that

$$m^* \left(\bigcup_{k=1}^n (A \cap E_k) \right) = \sum_{k=1}^n m^* (A \cap E_k) \quad \text{for all } n \in \mathbb{Z}^+.$$
 [30 points]

[Hint: You may use the fact that $\bigcup_{k=1}^{n} E_k$ is Lebesgue measurable for all $n \in \mathbb{Z}^+$.]

(ii) Hence, show that
$$m^* \left(\bigcup_{n=1}^{\infty} (A \cap E_n) \right) = \sum_{n=1}^{\infty} m^* (A \cap E_n)$$
.

(iii) Deduce that
$$m^* \left(\bigcup_{n=1}^{\infty} E_n \right) = \sum_{n=1}^{\infty} m^* (E_n).$$
 [10 points]

(iv) Let
$$\{F_n\}$$
 be a sequence of subsets of \mathbb{R} such that $F_n \subseteq E_n$ holds for each $n \in \mathbb{Z}^+$.

Using part (ii), show that $m^* \left(\bigcup_{n=1}^{\infty} F_n \right) = \sum_{n=1}^{\infty} m^* (F_n)$. [20 points]

3. Define a $\sigma-$ algebra, Θ , on a non-empty set X and a measure, μ , on a measurable space (X,Θ) . [10+10 points]

Let X be an uncountable set.

- (a) Define $\Theta := \{ E \subseteq X \mid E \text{ or } E^c \text{ is countable } \}$.
 - (i) Show that Θ is a σ algebra on X.

[25 points]

[20 points]

(ii) Let $S:=\{\{x\}\mid x\in X\}$. Show that $\Theta=\sigma(S)$, the $\sigma-$ algebra generated by S.

[20 points]

(b) Define $\mu:\Theta\to[0,\infty)$ by

$$\mu(E) = \begin{cases} 0; & \text{if } E \text{ is countable,} \\ 1; & \text{if } E^c \text{ is countable.} \end{cases}$$

Show that μ is a measure on Θ .

[25 points]

Now let $X = \mathbb{R}$. Evaluate (i) $\mu(2\mathbb{Z})$ and (ii) $\mu(\mathbb{R}\backslash 2\mathbb{Z})$.

[5+5 points]

- 4. (a) Let (X, Θ, μ) be a measure space and $A \in \Theta$ with $\mu(A) = 0$.
 - (i) Let ϕ be a non negative simple measurable function. Show that $\int_A \phi \ d\mu = 0$.

[15 points]

(ii) Let f be a non negative measurable function. Show that $\int_A f d\mu = 0$.

[15 points]

- (b) Let (X, Θ, μ) be a complete measure space and let $f: X \to \mathbb{R}$ be a measurable function. It is given that $f = g \mu$ almost everywhere.
 - (i) Show that g is also measurable.

[20 points]

(ii) If $f \ge 0$, show that $\int f d\mu = \int g d\mu$.

[10 points]

[---]

(c) Consider the Lebesgue measure space ([0,1], \mathcal{L}, m). Let $f:[0,1]\to\mathbb{R}$ be define by f(x)=x and let $g:[0,1]\to\mathbb{R}$ be define by

$$g(x) = \begin{cases} -x; & \text{if } x \in [0, 1] \cap \mathbb{Q}, \\ x; & \text{if } x \in [0, 1] \cap (\mathbb{R} \setminus \mathbb{Q}). \end{cases}$$

(i) Using the definition, show that f is measurable.

[15 points]

(ii) Show that g is also measurable.

[10 points]

(iii) Evaluate $\int g dm$.

[15 points]

5. (a) State clearly the monotone convergence theorem and the Fatou's Lemma.

Prove the Fatou's Lemma.

[10+10 points] [20 points]

- (b) Let (X, Θ, μ) be a measure space and let $\{f_n\}$ be a sequence of non-negative measurable functions on X.
 - (i) If $f_n \leq f$ for all $n \in \mathbb{Z}^+$, where f is an integrable function, show that $\limsup_{n \to \infty} \int f_n d\mu \leq \int \limsup_{n \to \infty} f_n d\mu$.

[25 points]

(ii) If f_n converges pointwise to f and $f_n \leq f$ for all $n \in \mathbb{Z}^+$, show that $\lim_{n \to \infty} \int f_n d\mu = \int f d\mu$.

[20 points]

(iii) Let f_n converges pointwise to f and $f_n \ge f$ for all $n \in \mathbb{Z}^+$. Is it true that $\lim_{n\to\infty} \int f_n d\mu = \int f d\mu$? justify your answer.

[15 points]

6. State and prove the Lebesgue Dominated Convergence Theorem.

[10+30 points]

(a) Let (X, Θ, μ) be a measure space and let f be an integrable function. Show that $\mu(\{x \in X \mid |f(x)| \geq \alpha\}) < \infty$ for all $\alpha > 0$.

[15 points]

- (b) Let (X, Θ, μ) be a measure space and let $\{f_n\}$ be a sequence of integrable functions such that $\sum_{n=1}^{\infty} \int |f_n| d\mu < \infty$. Show that $\sum_{n=1}^{\infty} f_n$ is integrable and $\int (\sum_{n=1}^{\infty} f_n) d\mu = \sum_{n=1}^{\infty} \int f_n d\mu$. [10+15 points]
- (c) Let f be an Lebesgue integrable function on (0,1). Find the following limit and justify your steps:

$$\lim_{k\to\infty} \int_0^1 k \ln\left(1 + \frac{|f(x)|^2}{k^2}\right) dx.$$

[20 points]

[Hint: You may use the elementary inequalities: $\ln(1+t) \le 2\sqrt{t}$ and $\left(1+\frac{x}{n}\right)^n \le e^x$.]