UNIVERSITY OF RUHUNA
 BACHELOR OF SCIENCE (GENERAL) DEGREE LEVEL III (SEMESTER I) EXAMINATION - NOVEMBER 2021

Subject: PHYSICS Course Unit: PHY 3114

Part II Time: 02 hours \& 30 minutes
Answer FIVE (05) Ouestions only.
(All symbols have their usual meaning)

Planck's constant, $h=6.626 \times 10^{-34} \mathrm{Js}$
Avogadro`s number, $N_{A}=6.022 \times 10^{23}$
Speed of light, $c=3 \times 10^{8} \mathrm{~ms}^{-1}$
$1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}$

Boltzmann constant, $k_{B}=1.38 \times 10^{-23} \mathrm{JK}^{-1}$
Mass of an electron, $m_{e}=9.1 \times 10^{-31} \mathrm{~kg}$
Charge of the electron $=1.602 \times 10^{-19} \mathrm{C}$
1 a.m.u $=1.66 \times 10^{-27} \mathrm{~kg}$

1. While sitting in front of a colour TV with a 25 kV picture tube potential, you have an excellent chance of being irradiated with X-rays.
(a) Describe, briefly the process that produces a possible X-ray flux?
[04 marks]
(b) Calculate the shortest wavelength of X-rays come out from the tube (i.e. X-rays with highest energy).
[08 marks|
(c) Assume that a rock salt (NaCl) crystal X-ray diffraction was taken using x-rays of wavelength equivalent to in part (b) above. Calculate the interplanar spacing for (200) planes and Bragg angle for a first order reflection maximum from these planes for the shortest wavelength of X-rays.
[13 marks]
Vote: The molecular weight of NaCl is $5.845 \times 10^{-2} \mathrm{kgmol}^{-1}$ and density of NaCl is
$2.165 \times 10^{3} \mathrm{kgm}^{-3}$. Consider that the number of atoms in the NaCl unit cell is 4 .
2. The electrical conductivity of a metal can be written as $\sigma=\frac{n e^{2} \tau}{m}$, where τ is the collision time of electrons in the metal and n is the clectron density.
(a) Describe, briefly, what is meant by the electrical conductivity of a metal. Show that the electrical conductivity depends on the mobility of the electrons in a metal.
[06 marks]
(b) If the collision time of the electron is 0.2 ns , calculate the mobility of the electron.
[04 marks]
(c) Calculate the electrical conductivity of the metal if the electron density is $10^{19} \mathrm{~m}^{-3}$.
[04 marks]
(d) What is meant by resistivity? Find the resistivity of the metal.
[06 marks|
(e) If a moving electron in a metal has an effective mass (m^{*}) equivalent to 0.1 times the mass of a free electron $\left(m_{e}\right)$, what would be the average time between the successive collisions?
[05 marks|
3. The mean number of molecules per unit volume with the speed in the range between v and $v+d v$ is given by Maxwell speed distribution,

$$
F(v) d v=4 \pi n\left(\frac{m}{2 \pi k T}\right)^{\frac{3}{2}} v^{2} e^{-\frac{m v^{2}}{2 k T}} d v
$$

(a) Using the speed distribution, show that the mean speed of a monatomic ideal gas molecule confined within a container of volume V and in equilibrium at absolute temperature T is $\sqrt{\frac{8 k T}{m \pi}}$.
(b) Also, show that the most probable speed of a gas molecule in this container is $\sqrt{\frac{2 k T}{m}}$.
[10-marks|
(c) Hence show that the mean speed of an ideal gas molecule exceeds the most probable speed by about 12.8%.
[04-marks]
(d) If the mass of one mole of gas is $16 \times 10^{-3} \mathrm{~kg}$, calculate the average speed of a gas molecule at $27^{\circ} \mathrm{C}$.
[05-marks]

Note: $\int_{0}^{\infty} e^{-\alpha x^{2}} x^{3} d x=\frac{1}{2 \alpha^{2}}$
4.
(a) Explain the statistics (at least 4 different characteristics) obeyed by a system of particles under
(i) Bose-Einstein and
[04-marks]
(ii) Fermi-Dirac distributions.
[04-marks]
(b) Consider N identical particles in volume V in equilibrium at absolute temperature T. If there is no interaction between particles show that the average number of particles in state s is given by $\bar{n}_{S}=-\frac{1}{\beta} \frac{\partial \ln z}{\partial \varepsilon_{S}}$. Here, z is the partition function of the system and ε_{S} is the energy of the particle in state \boldsymbol{s}.
[08-marks|
(c) Consider a system of four identical particles that obey Bose-Einstein statistics. Assume that each particle can be in any of the three quantum states $s=1,2$ and 3 . In a table, list all possible quantum states of this system of particles.
[09-marks]
5.
(a)
(i) State the de Broglie equation for matter waves.
[03 marks]
(ii) Calculate the de Broglie wavelength of an electron having a kinetic energy of 1000 eV .
[04 marks]
(iii) Compare the result in part (ii) with the wavelength of x -rays having the same energy.
[03 marks]
(b)
(i) State Heisenberg's uncertainty principle in mathematical form, describing each term.
[03 marks|
(ii) A bullet of mass 0.03 kg is moving with a velocity $500 \mathrm{~ms}^{-1}$. The speed is measured up to an accuracy of 0.02%. Calculate the uncertainty in the measurement of position of the bullet.
|05 marks|
(iii)Describe the result in part (ii)
(c)
(i) Write down the mathematical forms of phase velocity and group velocity.
[02 marks|
(ii)The waves on the surface of water travel with a phase velocity $v_{p}=\sqrt{g \lambda / 2 \pi}$, where g is the acceleration due to gravity and λ is the wavelength of the wave. Show that the group velocity of a wave packet comprised of these waves is $v_{p} / 2$.
[03 marks]
6.
(a) Write down the general 1-D expression of time-independent Schrodinger equation. Describe what each term represents.
[04 marks]
(b) A particle of mass m is confined to a 1 -dimentional infinite potential well of width $4 \boldsymbol{a}$ specified by $V(x)=\left\{\begin{array}{l}0 ;-2 a \leq x \leq 2 a \\ \infty ; \text { otherwise }\end{array}\right.$ as shown in the figure.

(i) Show that the energy eigenvalues are givens by $E_{n}=\frac{\pi^{2} \hbar^{2}}{32 m a^{2}} n^{2} ; n=1,2,3, \ldots$
[08 marks]
(ii) Find corresponding eigen functions (Normalization is not required).
(c) If the particle specified in part (b) is an electron and the width of the potential well is $1 \AA$,
(i) Calculate the separation between the two lowest energy levels.
[03 marks]
(ii) Calculate the frequency and the wavelength of the photon corresponding to a transition between these two levels.
[04 marks]
(iii) In what region of the electromagnetic spectrum does this frequency/wavelength fall?
[02 marks]
@ @ @ @ @ @ @ @ @ @ (@ @ @ @ @ @ @ @ @

