

UNIVERSITY OF RUHUNA

Faculty of Engineering

Mid-Semester 4 Examination in Engineering (Repeat): October 2015

Module Number: IS4307

Module Name: Probability and Statistics (O/C)

[Two Hours]

[Answer all questions, each question carries five marks]

Q1 a) The following data represent the length of life in years, measured to the nearest tenth, of 30 similar fuel pumps:

2.0	3.0	0.3	3.3	1.3	0.4
0.2	6.0	5.5	6.5	0.2	2.3
1.5	4.0	5.9	1.8	4.7	0.7
4.5	0.3	1.5	0.5	2.5	5.0
1.0	6.0	5.6	6.0	1.2	0.2

- i) Construct a relative frequency distribution.
- ii) Compute the sample mean, sample range, and sample standard deviation.

[2 Marks]

- b) Consider an experiment in which you select a modeled plastic part, such as a connector, and measure its thickness. The possible values for thickness depend on the resolution of the measuring instrument, and they also depend on upper and lower bounds for thickness,
 - i) Define the sample space.
 - ii) If it known that all connectors will be between 10 and 11 millimeters thick, then define the sample space.
 - iii) If the objective of the analysis is to consider only whether a particular part is low, medium, or high for thickness, then define the sample space.

[1.5 Marks]

c) Three machines A, B and C produce respectively 50%, 30% and 20% of the total number of items of a factory. The percentages of defective output of these machines are 3%, 4% and 5%. If an item is selected at random find the probability that the item is defective.

[1.5 Marks]

- Q2 a) A company manufactures metal cylinders that are used in the construction of a particular type of engine. These cylinders, which must slide freely within an outer casing, are design to have a diameter of 50mm. The Company discovers however, that the cylinders it manufactures can have a diameter anywhere between 49.5 and 50.5mm.
 - i) Define appropriate random variable and its values.
 - ii) Define the probability density function f(x) for the diameter of a metal cylinder. If $f(x) = 1.5 6(x 50)^2$, then show that $\int_{-\pi}^{\infty} f(x) dx = 1$.
 - iii) Find the cumulative distribution function of the metal cylinder.
 - iv) Find the expected diameter of a metal cylinder.
 - v) Find the variance of a metal cylinder.

[3 Marks]

b) The discrete random variable X has a probability mass function given by

$$P(X = x) = \frac{x}{10}$$
 for $x = 1, 2, 3, 4$.

Find:

- i) E(X)
- ii) $E(X^2)$
- iii) $E(X^2 + 2X 3)$
- iv) Verify that $E(X^2 + 2X 3) = E(X^2) + 2E(X) 3$.

[2 Marks]

Q3 a) Define the moment generating function, $M_X(t)$ for a discrete random variable X. [1 Mark]

b) Prove that

$$\frac{d^r}{dt^r} M_X(t) \bigg|_{t=0} = \mu_r' \text{, where } \mu_r' = E(X^r)$$

[2 Marks]

c) Find the moment generating function of the binomial random variable X and

then use it to verify that mean $\mu = np$ and variance $\sigma^2 = npq$.

[2 Marks]

Q4 a) Write down the density function of the normal random variable X with mean μ and variance σ^2 .

[1 Mark]

- b) Suppose that $Z \sim N(0,1)$. Find:
 - i) $P(Z \le 1.34)$
 - ii) $P(Z \ge -0.22)$
 - iii) $P(-2.19 \le Z \le 0.43)$
 - iv) $P(0.09 \le Z \le 1.76)$

[1 Mark]

- c) The thicknesses of glass sheets produced by a certain process are normally distributed with a mean of $\mu = 3.00$ mm and a standard deviation of $\sigma = 0.12$ mm.
 - i) What is the probability that a glass sheet is thicker than 3.2 mm?
 - ii) What is the probability that a glass sheet is thinner than 2.7 mm?

[2 Marks]

d) A company manufactures concrete blocks that are used for construction purposes. Suppose that the weights of the individual concrete blocks are normally distributed with a mean value of μ = 11.0 Kg and a standard deviation of σ = 0.3 Kg. Find the probability that a concrete block weights less than 10.5 Kg.

[1 Mark]

CUMULATIVE NORMAL DISTRIBUTION

$$\Phi(x) = \int_{-\pi}^{\pi} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$$

X	.00	1.01	1.02	1.03	.04	.05	.06	.07	.08	.09
.0	.5000	5040	5080	.5120	.5160	.5199	.5239	5279	.5319	.5359
1	.5398	.5438	5478	.5517	.5557	.5596	.5636	5675	.5714	.5753
.2	.5793	.5832	5871	.5910	5948	.5987	.6026	.6064	.6103	.6141
.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	,6480	.6517
.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
		.055								. }
.5	6915	.6950	.6985	.7019	.7054	.7088	.7123	7157	.7190	.7224
.6	7257	7291	7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
.7	7490	7611	7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
.5	.7881	.7910	7939	.7967	.7995	.8023	.8051	.8078	,8106	.8133
.9	.8159	.8186	8212	.8238	.8264	.8289	.8315	8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	8849	.8869	.8888	.8907	.8925	.8944	.8962	8980	.8997	.9015
1.3	଼9032	.9049	9066	.9082	.9099	.9115	.9131	.9147	9162	,9177
14	.9192	.9207	9222	.9236	.9251	.9265	.9279	.9292	.9306	; 9 319
							•			
1.5	9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	9452	.9463	9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
i										
2.0	9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
į					-					
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	9973	,9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	,9981
2.9	.9981	.9982	9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
		. 4								
3.0	.9987	.9987	.9987	.9988	.9988	. 9989	.9989	.9989	9990	.9990
3.1	.9990	.9991	9991	.9991	.9992	9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	9994	.9994	.9994	.9994	9994	.9995	9995	.9995
3,3	.9995	.9995	9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	9997	.9997	9997	.9997	.9997	.9997	9997	.9998
	-									

	9-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1								
X	1.282	1.645	1.960	2.326	2.576	3.090	3.291	3.891	4.417
$\Phi(x)$.95	.975	.99	.995	999	.9995	.99995	. 99 9995
$2[1-\Phi(x)]$.20	.10	.05	.02	.01	.002	.001	.0001	.00001