

UNIVERSITY OF RUHUNA

Faculty of Engineering

End-Semester 7 Examination in Engineering: March 2022

Module Number: EE 7205

Module Name: Digital Signal Processing

[Three Hours]

[Answer all questions, each question carries 10 marks]

All notations and symbols have their usual meaning unless otherwise stated If necessary, you may use the provided information in Table I and Table II.

- Q1 a) The parameters, signal energy and signal power, are used to characterize a signal.
 - i) What is the difference between an energy signal and a power signal?
 - ii) Show that the unit step sequence is a power signal.

[3 marks]

b) A system is governed by the difference equation

$$y[n] = 2x[n] - x[n-3].$$

Determine analytically whether the system is

- i) linear,
- ii) time-invariant.

[3 marks]

- c) Refer to x[n] and y[n] signals shown in Figure Q1(a). Note that y[n] is the output of an Linear Time Invariant (LTI) system when x[n] is the input.
 - i) Find the impulse response h[n] of the system.
 - ii) What is the response of the system for the input signal z[n] shown in Figure Q1(b)?

[4 marks]

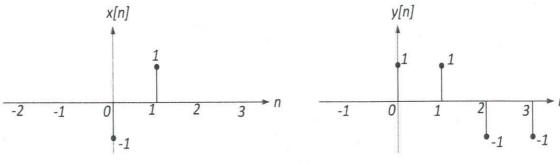


Figure Q1(a)

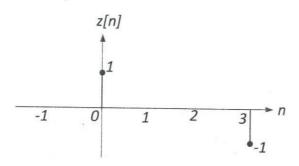


Figure Q1(b)

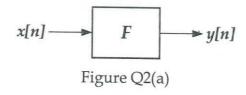
Q2 a) What is meant by the BIBO stability of a system? Show that the nonlinear system described by the input-output relation

$$y[n] = y^2[n-1] + x[n]$$

is BIBO unstable.

[2 marks]

- b) The causal discrete-time LTI system F shown in Figure Q2(a) has input x[n] and output y[n] related by the difference equation y[n] = 4y[n-1] + x[n].
 - i) Determine the transfer function F[Z] of the system and specify the region of convergence (ROC).
 - ii) Justify that the system *F* is unstable.



[2 marks]

c) As shown in Figure Q2(b), a negative feedback is added to the system F described in part b) to form a new causal LTI system H.

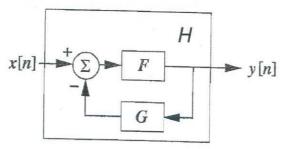


Figure Q2(b)

The impulse response of the LTI system G is given by $g[n] = K\delta[n]$, where $K \in \mathbb{R}$ is a real constant. For what values of the constant K is this overall system H BIBO stable?

[3 marks]

d) x[n] and y[n] are two periodic signals with a period N. Assume $y[n] \neq 0, \forall n$, and

$$z[n] = \sum_{k=0}^{N-1} \frac{x[k]}{y[n-k]}$$

- i) Is the signal z[n] periodic? If yes, what is its period?
- ii) Let X[k], W[k], Z[k] be the Fourier coefficients of discrete-time sequences x[n], $w[n] = \frac{1}{y[n]}$ and z[n] respectively. Show that

$$Z[k] = N \cdot X[k] \cdot W[k].$$

[3 marks]

Q3 a) The Discrete Fourier Transform (DFT) of the sequence

$$x[n] = \{x[0], x[1], x[2], ..., x[N-1]\}$$

is given as

$$X[k] = \{X[0], X[1], X[2], \dots, X[N-1]\}.$$

Consider the sequence

 $s[n] = \{x[0], x[1], x[2], ..., x[N-1], x[0], x[1], x[2], ..., x[N-1]\}$ of length 2N. If S[k] is the DFT of the sequence s[n], show that

$$S[k] = \begin{cases} 0; & \text{if } k \text{ is odd} \\ 2X \left[\frac{k}{2} \right]; & \text{if } k \text{ is even} \end{cases}$$

for k = 0, 1, 2, ..., (2N - 1).

[3 marks]

b) $y_R[n]$ is a real-valued sequence with Discrete-time Fourier Transform $Y_R(e^{j\omega})$. The sequences $y_R[n]$ and $y_I[n]$ in Figure Q3(a) are interpreted as the real and the imaginary parts of a complex sequence y[n], i.e., $y[n] = y_R[n] + jy_I[n]$. Determine an expression for $H(e^{j\omega})$ in Figure Q4(a), such that $Y(e^{j\omega})$ is $Y_R(e^{j\omega})$ for negative frequencies and zero for positive frequencies between $-\pi$ and π , i.e.,

$$Y(e^{j\omega}) = \begin{cases} Y_R(e^{j\omega}); & -\pi < \omega < 0 \\ 0; & 0 < \omega < \pi \end{cases}$$

[3 marks]

$$y_{R}[n] \longrightarrow y_{I}[n] = y_{R}[n] + jy_{I}[n]$$
Figure Q3(a)

Page 3 of 7

c) Consider the sequence $x[n] = \{2, 0, 2, 0, 1, 0, 1, 0\}$. Determine the 8-point DFT of x[n] by using the FFT algorithm shown in Figure Q3(b) in page 7.

[4 marks]

Q4 a) Sketch the cascade form structure for the realization of the following discretetime system.

$$H[z] = \left(\frac{1+z^{-1}}{1-\frac{3}{4}z^{-1}}\right) \left(\frac{1+z^{-1}}{1+\frac{1}{2}z^{-1}}\right).$$

[2 marks]

b) A parallel-form realization of an Infinite Impulse Response (IIR) filter can be obtained by performing a partial fraction expansion of the system function H[Z]. Determine and sketch the parallel-form structure of the system

$$H[Z] = \frac{1 - \frac{1}{2}Z^{-1}}{1 - \frac{7}{8}Z^{-1} + \frac{3}{32}Z^{-2}}.$$

[2 marks]

Consider the 2-stage lattice filter structure shown in Figure Q4 with lattice coefficients $K_1 = \frac{1}{4}$ and $K_2 = \frac{1}{2}$. Determine the corresponding Finite Impulse Response (FIR) filter coefficients b_1 and b_2 of the direct-form structure obtained by

$$y[n] = x[n] + b_1x[n-1] + b_2x[n-2].$$

[3 marks]

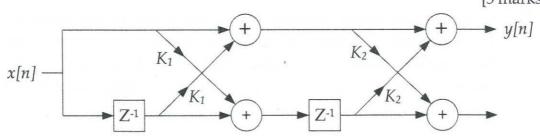


Figure Q4

- d) The window method is one of the main techniques used for FIR filter design.
 - i) List four windows used for designing FIR filters?
 - ii) State an expression for the rectangular window function.
 - iii) What are the desirable characteristics of the window function to be used?

[3 marks]

Q5 a) Which filter structure, FIR or IIR has feedback and therefore can be unstable if the coefficients are inappropriately chosen? Briefly discuss your answer.

[1 mark]

- i) Explain the meaning of phase delay and state an expression for the phase delay of an FIR filter.
 - ii) Mention the necessary and sufficient condition for linear phase characteristics in FIR filter in terms of phase delay.

[2 marks]

c) A second order digital filter is to be designed from an analog filter

$$H_a(s) = G \frac{(s-z_1)(s-z_2)}{(s-p_1)(s-p_2)}$$

having two poles in the s-plane at $p_1 = -1 + 2j$ and $p_2 = -1 - 2j$, and two zeros at $z_1 = j$ and $z_2 = -j$ using the bilinear transformation method characterized by the mapping $s = \frac{z-1}{z+1}$.

i) Is the resulting digital filter BIBO stable? Briefly explain your answer.

[2 marks]

ii) Let the frequency response of the resulting digital filter as $H(\omega)$, i.e., the Discrete-time Fourier Transform (DTFT) of its impulse response. Assume that there is only one value of ω for which $H(\omega)=0$ where $0<\omega<\pi$. Determine that value of ω .

[1 mark]

iii) Draw the pole-zero diagram of the resulting digital filter.

[1 mark]

iv) If H(0) = 0.8, plot the magnitude of the DTFT of the resulting digital filter, $|H(\omega)|$, over $-\pi < \omega < \pi$. Indicate clearly any frequency in which $|H(\omega)| = 0$. Also show that the numerical values of $|H(\omega)|$ for $\omega = \frac{\pi}{2}$ and $\omega = \pi$.

[2 marks]

v) Determine the difference equation of the resulting digital filter.

[1 mark]

Table I: Some common Z-Transform pairs

Signal, $x[n]$	z-Transform	Region of convergence
$a^nu[n]$	$\frac{1}{1-az^{-1}}$	z > a
$-a^nu[-n-1]$	$\frac{1}{1-az^{-1}}$	z < a
$na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
$-na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
$(\cos \omega_0 n) u(n)$	$\frac{1 - z^{-1}\cos\omega_0}{1 - 2z^{-1}\cos\omega_0 + z^{-2}}$	z > 1
$(\sin \omega_0 n) u(n)$	$\frac{z^{-1}\sin\omega_0}{1 - 2z^{-1}\cos\omega_0 + z^{-2}}$	z > 1

Table II: Frequency analysis of discrete-time signals

Periodic signals		Aperiodic signals	
Synthesis equation	$x[n] = \sum_{k=0}^{N-1} c_k e^{j2\pi kn/N}$	Synthesis equation	$x[n] = \frac{1}{2\pi} \int X(\omega) e^{j\omega n} d\omega$
Analysis equation	$c_k = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j2\pi kn/N}$	Analysis equation	$X(\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$

Index Number:

Note: Figure Q3(b) should be attached to the answer script.

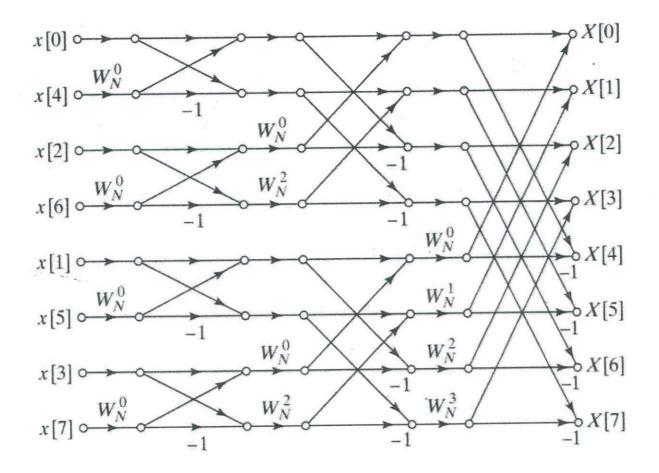


Figure Q3(b)