

UNIVERSITY OF RUHUNA

Faculty of Engineering

End-Semester 3 Examination in Engineering: July 2022

Module Number: CE3303

Module Name: Fluid Mechanics (C-18)

[Three Hours]

[Answer all questions. Each question carries FIFTEEN marks]
All standard notations denote their usual meanings.

Q1. a) Water flows at a steady mean velocity of 1.5 m/s through a 50 mm diameter pipe sloping upward at 45° to the horizontal. At some section, the pressure is 700 kPa and at a section further along the pipe, the pressure is 462 kPa. Determine the average shear stress at the wall of the pipe and at a radius of 10 mm.

[7 Marks]

b) Velocity in a laminar boundary layer is approximated by the two straight-line segments indicated in Figure Q1. Apply the momentum integral equation to determine the boundary layer thickness and wall shear stress.

Figure Q1

[8 Marks]

Q2. The flowrate between tank A and tank B, shown in Figure Q2, is to be increased by 30% by the addition of a second pipe, indicated in dotted line, running from node C to tank B. If the elevation of the free surface in tank A is 7.5 m, determine the diameter of the new pipe. You may refer to the Moody diagram given in Page 4.

[15 Marks]

Q3. a) A two-dimensional flow field for a non-viscous, incompressible fluid is described by the velocity components

$$u = 3x^2 - 3y^2$$
$$v = -6xy$$

where x and y are in meters.

(i) Determine the stream function of the flow field.

[3 Marks]

(ii) Determine the rate of flow across the straight path AB shown in Figure Q3a.

Figure Q3a

[3 Marks]

b) (i) The stream function for a source is given by $^{q\theta}/_{2\pi}$. Derive an expression for the stream function of flow around a half-body.

[1 Mark]

(ii) One end of a pond has a shoreline that resembles a half-body as shown in Figure Q3b. A vertical porous pipe is located near the end of the pond so that water can be pumped out. When water is pumped at the rate of 0.04 m³/s through a 3 m long pipe, what will be the velocity at point A?

[8 Marks]

- Q4. The pressure rise ΔP generated by a pump of given geometry depends on the impeller diameter D, its rotational speed N, the fluid density ρ , the viscosity μ , and the discharge Q.
 - a) Show that the relationship between these variables can be expressed as;

$$\frac{\Delta P}{\rho D^2 N^2} = \emptyset \left(\frac{Q}{ND^3}, \frac{\rho ND^2}{\mu} \right)$$

[6 Marks]

b) From the relationship obtained in part (a), show that hydraulic scaling laws for a single pump are (1) $\frac{Q_2}{Q_1} = \frac{N_2}{N_1}$ and (2) $\frac{H_2}{H_1} = \left(\frac{N_2}{N_1}\right)^2$.

[3 Marks]

c) The characteristics curve for a centrifugal pump operating at 1000 rpm is given in Figure Q4. At its duty point, it generates a head of 12 m when pumping water at a rate of 0.015 m³/s. If a similar pump is to operate at a corresponding to its characteristics delivering 0.03 m³/s of water against a total head of 30 m, determine the rotational speed at which the pump should run to meet the requirement.

[6 Marks]

Page 4 of 5

