

UNIVERSITY OF RUHUNA

Faculty of Engineering

End-Semester 3 Examination in Engineering: July 2022

Module Number: IS3302

Module Name: Complex Analysis and Mathematical Transforms (C 18)

[Three Hours]

[Answer all questions, each question carries twelve marks]

Q1. a) Discuss the continuity of the function f(z) at z = i.

$$f(z) = \begin{cases} \frac{z^2 + 1}{z - i} & ; z \neq i \\ 0 & ; z = i \end{cases}$$

[3 Marks]

b) Consider the harmonic function $u(x, y) = e^{-x} \cos y + xy$.

i Find a harmonic conjugate of u(x, y).

ii Find the corresponding analytic function f(z).

[3 Marks]

c) In the usual notations, z and w are two complex numbers in Z and W planes respectively.

i Find the image curves of the lines x = 2 and y = 1 under the mapping, $w = z^2$.

ii Find the angles between the image curves at the point of intersection on the w – plane, where u > 0 and v > 0.

iii Discuss whether the mapping $w = z^2$ is conformal or not at the point z_0 ; where z_0 is the point of intersection of the lines x = 2 and y = 1.

[6 Marks]

Q2. a) Find the Maclaurin series of $f(z) = \frac{1}{1-z}$; |z| < 1.

[3 Marks]

b) Obtain all possible Laurent's series of the function $f(z) = \frac{1}{z^2 - 3z + 2}$ about z = 0.

[4 Marks]

c) Use Cauchy's Residue Theorem to evaluate the following. $\int_0^{2\pi} \frac{1}{\left(\frac{5}{4} + \sin \theta\right)} d\theta \; ; \; C \text{ is the unit circle}$

[5 Marks]

Q3. a) In the usual notations, if the Laplace transform of the function f(t) is given by L[f(t)] = F(s), then show that $L[e^{at}f(t)] = F(s-a)$. Hence, find the Laplace transform of the followings.

i
$$e^{-3t}(\cos 4t + 3\sin 4t)$$

ii
$$e^{-t}u(t-a)$$

[3 Marks]

Using the Laplace transform, solve the initial value problem.

$$\frac{dy}{dt} = y + 3x ; y(0) = 2, x(0) = 1$$

$$\frac{dx}{dt} = 4y - 4e^{t} ; y'(0) = 3, x'(0) = 2$$

[4 Marks]

Consider the following first order linear differential equation that describes the radioactive decay.

$$\frac{dN}{dt} = -\lambda N \quad ; \quad N(0) = N_0$$

where N = N(t) represents the number of undecayed atoms remaining in a sample of a radioactive isotope at time t and λ is the decay constant.

Use Laplace transform to obtain the correct form for radioactive decay N(t).

d) Find the inverse Laplace transform of F(s) using Convolution theorem. Where α, k and *l* values are constants.

$$F(s) = \frac{k}{l} \frac{\alpha}{s^2 \left(s^2 + \frac{k}{l}\right)}$$

[3 Marks]

Q4. a) Prove that $Z\{a^n, u(n)\} = \frac{z}{z-a}; |z| > a$.

Hence, find the Z transform of the following sequence.

$$x(n) = \left(-\frac{1}{3}\right)^n u(n) - \left(\frac{1}{2}\right)^n u(-n-1)$$

where $Z[u(n)] = \frac{z}{z-a}$; |z| > a.

[4 Marks]

b) Find the inverse *Z* transform of the following function using Convolution theorem. $F(z) = \frac{z^2}{(z-1)(2z-1)}$

$$F(z) = \frac{z^2}{(z-1)(2z-1)}$$

[3 Marks]

Solve the following difference equation using *Z* transform.

$$f_{k+2} + 6f_{k+1} + 9f_k = 2^k$$
; $f(0) = 0$, $f(1) = 0$

[5 Marks]

Q5. a) Consider the Fourier Series for a function f(t) of period 2π ;

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt)$$

Where,

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos nt \, dt$$
; $n = 1, 2, 3, ...$, $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin nt \, dt$; $n = 1, 2, 3, ...$

- Find the Fourier series expansion of the function f(t) = t of period 2π defined in the interval $(-\pi, \pi)$.
- Hence, by giving an appropriate value to t, show that

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$$

[4 Marks]

b) In the usual notations, equations of the Fourier transform and inverse Fourier transform are

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt$$
 and $f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega)e^{i\omega t}d\omega$ respectively.

i Find the inverse Fourier transform of e^{-x^2} .

(use
$$\int_0^\infty e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$$
, $F\{f(at)\} = \frac{1}{a}F\left(\frac{\omega}{a}\right)$, $F\{f(t-t_0)\} = e^{-i\omega t_0}F(\omega)$, $F\{e^{i\omega_0 t}f(t)\} = F(\omega-\omega_0)$)

ii Hence, find the Fourier transform of $e^{-2(x-3)^2}$.

[5 Marks]

c) The equation of motion for a damped harmonic oscillator driven by a force f(t), takes the form

$$\frac{d^2x}{dt^2} + k\frac{dx}{dt} + \lambda^2 x = f(t)$$

where the damping constant k > 0, and λ^2 is positive constant. Use Fourier transform to solve the differential equation.

[3 Marks]