UNIVERSITY OF RUHUNA

Faculty of Engineering

End-Semester 3 Examination in Engineering: August 2022

Module Number: EE3302 Module Name: Data Structures and Algorithms

[Three Hours]
[Answer all questions, each question carries 10 marks.]
[This paper consists of 10 pages.]

Q1.

b)

Give two (2) examples each for physical data structures and logical data
structures.
[1.0 mark]
Draw the allocation of memory when the code snippet given in Figure
Q1.a).ii) is executed. Specify the memory type (i.e., stack or heap) used
by each scope.
[1.5 marks]

Give two (2) instances where the Array data structure and the Linked
List data structure are different from each other.
[1.0 mark]

Singly Linked List is a unidirectional linked list. Write a method to
Search the first node with a given value in a Singly Linked List using
C++ language.

[1.5 marks]
Compute the best, worst, and average case time complexities of the
Search operation in part Q1.b).ii) (use big O notation).

[1.5 marks]

Doubly Linked List is a bidirectional linked list. Write a C++ program
for a Node class in Doubly Linked List.
[1.0 mark]

Write a method for DeleteAt(int position) operation, which deletes the
node at the given position, in a Doubly Linked List using C++ language.
You may call existing methods to delete the values at first and last
positions.

[2.5 marks]

Page 1 of 10

Q2.

Q3.

b)

State the main concept behind the design of a Stack data structure.

[0.5 marks]
Assume a Stack data structure is implemented with top variable
pointing to the last element with a value in an Array. Write a method
using C++ language to implement the POP operation.

[1.0 mark]

Explain how to check whether a given Queue is full or not, using only
the front and rear variables.

[1.0 mark]

State one (1) advantage and one (1) disadvantage of Binary Search Tree
(BST) over other data structures.

[1.0 mark]
Draw the Binary Search Tree created after inserting the following
numbers in the given order.

32,17, 20, 5, 40, 35, 27, 8, 18

[1.0 mark]
Write the order of the nodes printed in Pre-order traversal, when applied
on the Binary Search Tree created in part Q2.b).ii).

[1.0 mark]
Draw the resulting Binary Search Tree, if the node with value 17 is
deleted in part Q2.b).ii).

[1.0 mark]

Compare and contrast Binary Search tree, AVL tree, and Red-Black
tree.

[1.5 marks]
Insert following numbers in the given order to an empty AVL tree.
You must draw the resulting tree after each insertion.

40, 60, 55, 30, 35
[2.0 marks]

Figure Q3.a) shows the C++ code for a particular sorting algorithm.

i)

ii)

Complete the missing expressions/terms (A-D) in the code given in
Figure Q3.a).

[1.0 mark]
Is the sorting algorithm given in Figure Q3.a) is recursive? State two (2
non-recursive sorting algorithms.

[1.0 mark]

Page 2 of 10

b)

iii)

Assume that n is the total inputs to the sorting algorithm, t; is the
number of times that the if statement in the inner loop runs, and tis the
number of times that the swap function runs in the sorting algorithm
given in Figure Q3.a).

I) Write an expression for the total running time of the algorithm
(T(n)) using n, t1, and t;
[1.0 mark]
IT) Derive an expression for t; in terms of n.
[1.0 mark]
IIl) ~ State the condition for worst case runtime complexity of the
algorithm and write this condition using t1 and t2. Thus, deduce
the worst-case runtime complexity in big O notation, using the
results you obtained in Q3.a).iii).I) and Q3.a).iii).II) above.
[1.0 mark]

A graph is a data structure consisting of a set of vertices (V) and Edges (E).

i)

Figure Q3.b).i) shows a directed graph. State two (2) ways a graph can
be implemented. Represent the graph given in Figure Q3.b).i) using
these two (2) ways of representations.

[1.5 marks]
Figure Q3.b).ii) shows an incomplete code written in C++ programming
language for the Depth First Search (DFS) algorithm to traverse in a
graph. Write down the missing expressions from A-D. Also write the
output when the function g.DFS(2) is called where ‘g’ is the graph given
in Figure Q3.b).i).

[1.5 marks]

A minimum spanning tree is defined for a weighted undirected graph.
Figure Q3.b).iii) shows a weighted undirected graph.

I) Define minimum spanning tree.
[0.5 marks]
) Showing each of the steps graphically and by using a table if
required, use the Kruskal's algorithm to obtain a minimum
spanning tree for the weighted undirected graph given in Figure
Q3.b).iii).
[1.5 marks]

What is an algorithm? List down two (2) properties of an algorithm.
[1.5 marks]

Page 3 of 10

Q5.

b)

State two (2) factors affecting the running time of an algorithm.

[1.0 mark]
Briefly explain the Big Omega (O) notation in asymptotic runtime
complexity analysis using graphs and inequalities.

[1.0 mark]
The C++ code for the heap sort algorithm is given in Figure Q4.a).

I) Assuming the asymptotic running time of the heapify(A,n,i)
function as H(n), derive an expression for H(n) and deduce the
best case and worst case values for H(n).

[1.0 mark]
IT) Derive an expression for the asymptotic running time (T(n)) of the
heap sort algorithm and deduce the worst-case asymptotic run

time complexity (when the input array is in ascending order).
[1.5 marks]

Briefly explain the partition function used in Quick-Sort Algorithm. You
must specify the inputs and output of the partition function, and the
overall task performed by the partition function in your explanation.
[1.0 mark]
Code snippet given in Figure Q4.b) shows an incomplete code written
in C++ programming language for the functions used in Merge Sort
Algorithm.
I) Complete the code in Figure Q4.b) by filling the missing words
from 1 to 4.
[1.0 mark]
1I) By using the given functions in Figure Q4.b), write a function
using C++ programming language for implementing the Merge
sort algorithm.
[1.0 mark]
) Clearly showing each of the steps graphically and writing each of
the steps of merge sort at each recursive calling of merge sort; sort
the following sequence using Merge Sort.
A ={3,1}
[1.0 mark]

A string can be considered as a character array. A string is passed to the method
as follows.

void reverse(string &str)

Page 4 of 10

b)

d)

Write a method using C++ programming language which reverses the string
using a stack data structure. Sample input and output for this function is given
in Figure Q5.a).

[2.0 marks]
The cryptographic algorithm for the Caesar’s cipher defined as follows.
Encrypt a string by shifting the characters by 3 positions to the right. Decrypt
by doing the reverse. The example inputs and outputs for encryption and
decryption operations of this cryptographic algorithm are given in Figure
Q5.b). Write functions using C++ programming language for implementation
of the Encryption and Decryption operations of the Caesar’s cypher.

[3.0 marks]

A string compression algorithm works by counting the number of consecutive
equal characters and outputting the character count as given in Figure Q5.c).
The data decompression algorithm works by reconstructing the original string
back from the given compressed string as shown in Figure Q5.c). Write the
method for decompression using C++ programming language.

[2.0 marks]
i) State two (2) factors that you should consider when selecting an
algorithm to perform a specific task.

[1.0 mark]
ii) Write two (2) applications of algorithms.

[1.0 mark]
iii) ~ Write a pseudocode to prepare a cup of tea.

[1.0 mark]

Page 5 of 10

int getTemperature() {
int* days = new int[7];
/*
* Some processing
x/f
return days[2]:

}

int main{) {
int temp = getTemperature():;

}

Figure Q1.a).ii): An example C++ code

void Swap(int * x, int * y)
int temp =;
(B);
(O

void(D)sort(int * A, int n)

for(int j=0; j < (n-1), j++) -

{ for(int i=n-1; i > j, i--)
{ if(A[3] > A[Li])
{ Swap(A+j, A+i);
: }
}

Figure Q3.a): C++ code for a particular sorting algorithm

Page 6 of 10

Figure Q3.b).i): A directed graph

void DFS(int s)

{
bool * visited = new bool[V];
for(int i = @; i < V; i++)
{
@
}
DFS_visit(visited, s);
}

void DFS_visit(bool * visited, int k)

&
cout << k << "5, 3
list<int>::iterator i;
for (i = adj[k].begin();(C); ++i)

{
if (lvisited[*i])
{
}

}

Figure Q3.b).ii): C++ code for DFS in a graph with adjacency list representation

Page 7 of 10

Figure Q3.b).iii): A weightea . c.irected graph

void heapify(int A[], int n, int i) {

if(i < n/2) {
int largest = i;
int left = (2 * 1) + 1:
int right = (2 * i) + 2;

if ((left < n) && (A[left] > A[largest])) {largest
if ((right < n) && (A[right] >Allargest])){largest
if (largest != i) {

swap(RA[i], &A[largest]);

heapify(A, n, largest);

left;}
right;}

}

}
void heap_sort(int A[], int n) {

for(int i = n/2-1; i >= @; i--) { heapify(A, n, i);}
for(int i = n-1; i>0; i--) {

swap(A[@], A[i]);

heapify(A,i,0);
}

Figure Q4.a): C++ code for the Heap Sort Algorithm

Page 8 of 10

void Divide(int * A, int size, int * B, dnt * ©)

{
int half = ((size-1)/2) + 1;
for(int i=0;i<half;i++){ ... (::)

2
for(int j=half;j<size;j++){ <’\> }

void Merge(int * B, int * C, int * A, int size)

{

int sizeB = ((size-1)/2) + 1;
int sizeC = size - sizeB;
int i=@;int j=@;int k=0;

while ((i<sizeB) && (j<sizeC))

{
if(B[1] <= C[F]){ALK] = B[i];k++;i++;)
else if(C[j] < B[i]){A[k] = Clilsk++;3++;}
}
if(i==sizeB)
{
for(int 1=3j;1 < sizeC;l++){..._A...... skt i+;)
}

else if(j==sizeC)

}

Figure Q4.b): Functions required for Merge Sort Algorithm

Page 9 of 10

Hello

reverse

» olleH

Figure Q5.a): Sample inputs and outputs for reverse function

Hellol

Khoor4

Encryption

Decryption

» Khoor4

- Hello1l

Figure Q5.b): Sample inputs and outputs for encryption and decryption

operations of Caesar’s cipher

TEEE6666

I1E364

Compress

Decompress

> I1E364

IEEE6666

FigureQ5.c): Sample inputs and outputs of data compression and decompression
algorithms

Page 10 of 10

