

## UNIVERSITY OF RUHUNA

## Faculty of Engineering

Semester 3 Examination in Engineering: July 2022

Module Number: CE3302

Module Name: Engineering Surveying

[Three Hours]

[Answer all questions. Each question carries **TWELVE** marks]
All Standard Notations denote their regular meanings

Q1 a) Determine the error in a quantity 'A' which is given by the addition of two independent quantities 'a' and 'b' (i.e A = (a + b)). Quantities 'a' and 'b' have standard errors of  $\sigma_a$  and  $\sigma_b$  respectively.

[3.0 Marks]

b) a, b, c, and d are angles at a station which add up to 360°. The observed values of the angles are as below,

a = 103° 27′ 20″ b = 91° 14′ 15″ c = 94° 23′ 50″

 $d = 70^{\circ} 54' 45''$ 

Angle (b+c) was measured separately twice and found to have an average value of 185° 38′ 10″. Find the most probable values of the four angles given that all angle measurements are of the same accuracy.

[9.0 Marks]

Q2 a) Briefly explain the difference between 'intersection' and 'resection' methods in triangulation surveying.

[2.0 Marks]

b) A baseline PQ of length 550 m is to be set out for a building complex. The bearing of PQ should be 90° 00′ 00″. The point P has already been selected on the ground and its coordinates are determined by taking angular observations from three control stations A, B, and C whose coordinates are;

 $E_A = 1947.372 \text{ mE}$ 

 $N_A = 2352.643 \text{ mN}$ 

 $E_B = 2717.483 \text{ mE}$ 

 $N_B = 2428.078 \text{ mN}$ 

 $E_C = 3227.637 \text{ mE}$ 

 $N_C = 2601.666 \text{ mN}$ 

The values of clockwise angles measured from A, B, and C are as follows;

 $P\hat{A}B = 57^{\circ} 04' 30"$ 

 $A\hat{B}P = 44^{\circ} 22' 20"$ 

 $B\hat{C}P = 32^{\circ} \, 01' \, 30''$ 

Calculate the coordinates of P and Q.

[10.0 Marks]

Q3 a) Link traverse is a type of traverse used in Engineering surveying. Write short notes (with sketches) on other types of traverses in surveying.

[2.0 Marks]

b) A link traverse (Figure Q3-1) commences from known stations, A and B, and connects to known stations C and D. Co-ordinates of points B and C are (3,854.28 mE, 9,372.98 mN) and (7,575.56 mE, 8,503.21 mN), respectively. The WCB of lines AB and CD are 151° 27′ 38″ and 347° 37′4 1″ respectively. Table Q3-1 indicates the lines, observed angles, and lengths of the legs of the link traverse. Calculate the final coordinates of all traverse points and find the accuracy of the traverse.

[10.0 Marks]

- Q4 a) Figure Q4-1 shows a rectangular plot which is to be excavated to a formation level of 10.0 m. The existing ground levels are in given Table Q4-1. Assuming the sides of the excavation to be vertical. Calculate its volume, considering it to be made up of prisms of rectangular sections.
  - [4.0 Marks] The levels recorded during a levelling exercise between stations A and E are given in Table Q4-2. The reduced levels of TBM1 and TBM2 are 567.550 m and 576.810 m, respectively. IF the least count for levelling staff is 5 mm, determine the corrected reduced levels of all points using the rise and fall method, giving all the necessary checks.

[8.0 Marks]

- Q5 a) List four types of support used during the tunnelling process (with a sketch). [4.0 Marks]
  - b) The partial coordinates obtained during the correlation survey between wires in each of two shafts A and E. are given in Table Q5-1.

If the surface coordinates of A and E are  $E_A = 556\,821.630$  mE,  $N_A = 447\,219.420$  mN,  $E_E = 557\,098.390$  mE,  $N_E = 447\,300.380$  mN respectively determine the surface coordinates of points B, C, D, and E.

[8.0 Marks]

## Tables, Figures, and Equations



Figure Q3-1: Diagram of link traverse

Table Q3-1: Data for link traverse

| ্ৰ ইন্ধি       | ion .          | (Oliver | Taycare 2 | ကျပြု |            |
|----------------|----------------|---------|-----------|-------|------------|
| ij om          | 1100           | · • •   | T.        | t The | Tength (m) |
| Α              | В              |         |           |       |            |
|                |                | 143     | 54        | 47    |            |
| В              | E <sub>1</sub> |         |           |       | 651.16     |
|                |                | 149     | 08        | 11    |            |
| E <sub>1</sub> | E <sub>2</sub> |         |           |       | 870.92     |
|                |                | 224     | 07        | 32    |            |
| E <sub>2</sub> | E <sub>3</sub> |         |           |       | 522.08     |
|                |                | 157     | 21        | 53    | - 1        |
| E <sub>3</sub> | E <sub>4</sub> |         |           |       | 1,107.36   |
|                |                | 167     | 05        | 15    |            |
| E <sub>4</sub> | С              |         |           |       | 794.35     |
|                |                | 74      | 32        | 48    |            |
| С              | D              |         |           |       |            |



Figure Q4-1: Plane view

Table Q4-1: Existing ground levels

| Spiron    | A    | В     | С     | D     | Е     | F     | G     | Н     | I     |
|-----------|------|-------|-------|-------|-------|-------|-------|-------|-------|
| Flevel(m) | 13.2 | 13.75 | 14.30 | 14.00 | 14.75 | 15.05 | 15.25 | 16.20 | 14.60 |

Table Q4-2: Data for levelling

| instancia.<br>Selion | ंधग्रेस्कलीत <u>ृ</u> ह | <sup>200</sup> Resoluç | કાગરભાદકાનું | magailing. |
|----------------------|-------------------------|------------------------|--------------|------------|
| A                    | 2.430 (TBM1)            | 2.310                  | 2.015        | 0.970      |
| В                    | 3.070                   | 3.270                  | 2.040*       | 0.425      |
| С                    | 2.930                   | 1.930                  | 1.170        |            |
| D                    | 2.420                   | 2.210                  | 1.370        |            |
| E                    | 3.255                   | 2.070                  | 0.930 (TBM2) |            |

Note: \* Inverted staff reading

Figure Q5-1: The partial coordinates

| ishiq: | Departure (AB) (m) | Laffitide (AN), (m) |
|--------|--------------------|---------------------|
| AB     | 119.662            | -9.105              |
| BC     | 79.498             | 13.958              |
| CD     | 89.954             | 48.197              |
| DE     | -13.445            | 31.543              |

## **Useful Equations**

$$t_{a} = \frac{C_{t}}{KL} + t_{s}$$

$$C_{t} = KL\Delta t$$

$$E_{F} = \frac{K_{1}E_{A} + K_{2}E_{B} + K_{3}E_{c}}{K_{1} + K_{2} + K_{3}}$$

$$C_{S} = -\frac{w^{2}L^{3}}{24T^{2}}$$

$$C_{S} = -\frac{w^{2}L^{3}}{24} \left(\frac{1}{T_{A}^{2}} - \frac{1}{T_{S}^{2}}\right)$$

$$C_{S} = -\frac{w^{2}L^{3}}{24} \left(\frac{1}{T_{A}^{2}} - \frac{1}{T_{S}^{2}}\right)$$

$$K_{1} = \frac{1}{(\cot a - \cot x)}$$

$$K_{2} = \frac{1}{(\cot b - \cot y)}$$

$$K_{3} = \frac{1}{(\cot b - \cot y)}$$

$$K_{4} = \frac{1}{(\cot b - \cot y)}$$

$$K_{5} = -L(1 - \cos \theta)$$

$$C_{6} = -L(1 - \cos \theta)$$

$$C_{7} = L\frac{H}{R}$$

$$K_{8} = \frac{AB_{S}}{AB_{W}}$$

$$K_{9} = (\emptyset_{AB})_{S} - (\emptyset_{AB})_{W}$$

$$(E_{1})_{S} = (E_{0})_{S} + k[(E_{1})_{W} \cos \theta + (N_{1})_{W} \sin \theta]$$

$$(N_{1})_{S} = (N_{0})_{S} + k[-(E_{1})_{W} \sin \theta + (N_{1})_{W} \cos \theta]$$