UNIVERSITY OF RUHUNA

Faculty of Engineering

End-Semester 2, Examination in Engineering, February 2023

Module No: EE2201 Module Name: Computer Programming II

[2 Hours]
[Answer all questions. All questions carry equal marks]

Part 11

Q1. Declaration of the class cList as it appears in the include file is given in Listing 1, and described
in Table Q1. The class cList is designed to store a list of 10 numbers, indexed from 1 to 10.
Definition (implementation) of constructors as they appear in the file cList.cpp is given in
Listing 2 in page 3.

Table Q1: Description of cList members

Method Description

cList () Constructor. Creates Empty List

cList (double argx] |) Constructor. Creates List initialized with argx] ]
bool InsertAt(int index, double argx ) | insert number argx at given index

double FindAt(int index) Returns the number at given index

bool Find(double argx) Returns true if given number argx exists ir the list
int FindIndex(double argx) Gets the index of a given number argx

cList Reverse() Reverses the list and returns it

double x[N] Store data of the list, where N=10

Implement the following member methods in C++.

a) bool InsertAt(int index, double argx ) [2 Marks]
b) bool Find(double argx) [2 Marks|
c) int FindIndex(double argx) [2 Marks]
d) cList Reverse() [2 Marks]

Q2. Declaration of the class cComplex as it appears in the include file cComplex.h is given in
Listing 3, and described in Table Q2. The class cComplex is designed to represent a complex
number of standard form Z = Re + iIm, where Re and Im are real numbers. Definition) of
constructors as they appear in the file cComplex.cpp is given in Listing 4.

a) Consider the definition of overloaded assignment operator of the class cComplex given in
Listing 5. Explain the purpose of statement return xthis; by using an appropriate example.
[2 Marks|

Page 1 of 4



Table Q2: Description of cComplex members

Method Description

double Re Real part of the imaginary number
double Im Imaginary part of the hnagina_‘i;‘%‘,‘z_ihiimber
cComplex() Overridden Default Constructor

cComplex(double a.rgRé, double argIm)

cComplex(&argZ)

void setRe(double argRe)

void setIm(double arglm)

void setZ(double argRe, double arglm)
double getRe()

double getIm()

cComplex & operator = (cComplex &argZ)
cComplex & operator + (cComplex &argZ)
bool isTemporary

void killWhenTmp(cComplex *m);

Overloaded Constructor.

Sets Re=argRe and Im=arglm
Copy Constructor

Sets Re = argRe

Sets Im = arglm

Sets Re = argRe and Im = arglm
Returns Re

Returns Im

Overloaded Assignment Operator
Overloaded + Operator

True if the object is temporary
Deletes m

Qs.

b) Modify the definition of the assignment operator of the class cComplex (in Listing 5) in

a)

b)

c)

order to avoid self assignment. [2 Marks]

Explain the purpose of method killWhenTemp() used in the overloaded + operator given in
Listing 6, by using an appropriate example of application. [2 Marks)’
Multiplication of complex numbers z1 and z where z; = a+ib and zp = c + id, results in

z = z1z3 = (ac — db) + i(ad + bc). Give the definition of overloaded operator * for the said
multiplication z;z. [2 Marks|

Why inheritance is required in computer programming?. Explain by using an example.
[4 Marks]
Assume that the variable x is declared in the base class. Explain the accessibility of x

in the derived class, if the applied access specifier on tox is private, public or protected.
[2 Marks]

What is polymorphism? Explain by using an example. [2 Marks]

Page 2 of 4



Listing 1: cList class declaration as it appears in the file cList.h

#ifndef CLISTH
#define CLIST_H

#define N 10

class cList
{ )
public:

cList (); // Creates Empty List
cList (double argx[]); // Creates List initialized with argz[]
bool InsertAt(int index, double argx );// insert value at given index
double FindAt(int index);// find the value at given index
bool Find(double argx);// check if given value ezists
int FindIndex (double argx);//get the index of a given wvalue
cList Reverse ():

virtual “cList ();

private:
double x[N};

¥i
#endif // CLIST.H

Listing 2: Constructors of cList as it appears in the file cList.cpp

cList :: cList ()
{ int i=0; while(i<N) { x[i]=0; ++i;} }

cList ;: cList (double argx|[])
{ int i=0; while(i<N) { x[i]=argx[i];++i;} }

Listing 3: cComplex class declaration as it appears in the file cComplex.h

#ifndef CCOMPLEXH
#define CCOMPLEX H

class cComplex
{
public:
cComplex ();
cComplex (double argRe, double argim);
cComplex (cComplex &argZ):
virtual “cComplex();
void setRe(double argRe);
void setIm(double arglm);
void setZ (double argRe, double argim);
double getRe(): :
double getIm ();

cComplex & operator = (cComplex &argZ);

Page 3 of 4



cComplex & operator + (cComplex &argZ);

private: .
double Re;
double Im;
bool isTemporary;
void killWhenTmp (cComplex #m);
& '
#endif // CCOMPLEX H

Listing 4: Constructors of cComplex as it appears in the file cComplex.cpp

cComplex : : cComplex ()
{ Re = 1; Im = 1; isTemporary = false;}

cComplex :: cComplex (double argRe, double argim)
{ Re = argRe;Im = argIlm;isTemporary = false;}

cComplex :: cComplex (cComplex &argZ)
{ Re = argZ.Re;Im = argZ.Im;killWhenTmp(&argZ);}

Listing 5: overloaded assignment operator of cComplex

cComplex & cComplex:: operator = (cComplex &argZ)
{ Re = argZ.Re; Im = argZ.Im;
killWhenTmp(&argZ ) ;
return *this;

Listing 6: overloaded + operator of cComplex

cComplex & cComplex :: operator + (cComple &argZ)
{ cComplex xptr = new cComplex ();

ptr—>isTemporary = true;

ptr—>Re = Re + argZ.Re;

ptr—>Im = Im + argZ.Im;
killWhenTmp(&argZ );
killWhenTmp (this );
return xptr;

Page 4 of 4



