90.830 · 0.830

UNIVERSITY OF RUHUNA

Faculty of Engineering

Mid-Semester 6 Examination in Engineering: November 2014

Module Number: ME 6317

Module Name: Computer Aided Manufacturing [Two Hours]

[Answer all questions, each question carries five marks]

- Q1. a) Briefly describe the following three basic components of a CNC system.
 - i. Part Program.
 - ii. Machine Control Unit (MCU).
 - iii. Machine Tool.

[3.0 Marks]

b) Differentiate "open loop control" and "closed loop control" of an NC control system.

[1.0 Marks]

c) Explain the significance of PID controlling for NC machine tools.

[1.0 Marks]

Q2. a) State basic activities that must be carried out in a factory to convert raw materials into finished products.

[1.0 Marks]

- b) i. How the product variety and the production quantity are related in a typical manufacturing organization?
 - ii. Define the term "batch production" and describe why it is often used for medium quantity production.

[2.0 Marks]

c) What do you mean by "CAM Systems"?

[2.0 Marks]

- Q3. a) i. What are the advantages of computer assisted part programming compared to the manual part programming.
 - ii. Briefly describe the Part Programmer's Job and the Computer's Job in computer assisted part programming.

[2.0 Marks]

b) Write the complete APT program for profiling and drilling operations of the part shown in *Figure Q3*. The profiling operation is divided into two sub operations called "Rough Cut" and "Finishing Cut". The processing parameters for each operation are as follows.

	Rough Cut	Finishing Cut	Drilling
Feed Rate (inches/min.)	6.0	3.0	5.0
Spindle Speed (rpm)	450	575	500
Coolant	ON	ON	ON
Cutter Diameter (inches)	0.5	0.25	0.5

Take the tool home position as (-1, -1, 2).

(You may use the APT definition words available at Table Q3)

[3.0 Marks]

- Q4. a) i. Briefly describe the benefits of adaptive control machining.
 - ii. Explain the situations where adaptive control can be applied most effectively. [1.5 Marks]
 - b) "Adaptive control system is a combination of hardware and software components". Explain this statement with the aid of suitable sketches.

[1.5 Marks]

c) Compare advantages and disadvantages of "SolidCAM iMachining" package with other CAM software packages.

[2.0 Marks]

All dimensions are in inches

Figure Q3

Table Q3: APT Definition Words

APT Word	Definition	
CALL	Used to call a MACRO	
CIRCLE / Descriptive Data	Used to define a circle	
CENTER	Used to define a center of a circle	
COOLNT/ Descriptive Data (ON or	Coolant On or Off	
CUTTER / Cuter Diameter	Defines cutter diameter	
FEDRAT / Descriptive Data	To specify the feed rate	
FINI	Must be the last word of APT program	
FROM / Descriptive Data	Starting location for the program	
GO / TO	Initialization command of the program	
GODLTA / Descriptive Data	Point to Point motion in incremental mode	
GOBACK / Descriptive Data	Instructs tool to move back	
GODOWN / Descriptive Data	Instructs tool to move down	
GOFWD / Descriptive Data	Instructs tool to move forward	
GOLFT / Descriptive Data	Instructs tool to move left	
GORGT / Descriptive Data	Instructs tool to move right	
GOTO / Descriptive Data	Point to Point motion in absolute mode	
GOUP / Descriptive Data	Instructs tool to move up	
LINE / Descriptive Data	Used to define a line	
PARALEL	To define a parallel line	
PERPTO	To define a perpendicular line	
MACRO	To define a MACRO	
SPINDL / Descriptive Data	To specify the spindle speed	
TERMAC	End of the MACRO	
TO, PAST, TANTO	Modifier words to define the check surface	
PLANE / Descriptive Data	To define a plane t	
POINT / Descriptive Data	To define a point	
RADIUS	Used to define a radius of a circle	
TURRET / Descriptive Data	For tool selection	
XSMALL,YSMALL,ZSMALL,XLARGE ,YLARGE,ZLARGE	f .	