OPTIMIZING THE WAREHOUSE LOCATION AND DISTRIBUTOR ALLOCATION: A CASE STUDY OF THE LPG DISTRIBUTION IN SRI LANKA

Chamari I. Kithulgoda ${ }^{\mathrm{a}}$ and D.D.M.Jayasundara ${ }^{\mathrm{b}}$
${ }^{a}$ Department of Computer Science, University of Ruhuna,Matara,Sri Lanka chamari@dcs.ruh.ac.lk
${ }^{b}$ Department of Statistics \& Computer Science, University of Kelaniya, Kelaniya,Sri lanka jayasund@kln.ac.lk

Abstract

In this paper, we deal with a real world warehouse location and distributor allocation problem of Liquefied Petroleum Gas (LPG) distribution in Sri Lanka. The existing supply chain has a single storage plant and 33 different distributors throughout the country. With this system, approximately $65 \mathrm{~km}(6.4946 \mathrm{e}+004 \mathrm{~m})$ should be travelled to satisfy a unit demand. We choose to proceed with the P-median model, which locates " p " facilities among " n " demand points and allocates each demand point to one of the facilities by assuming every demand point can be elected as a median. Then the problem was solved by computational Myopic algorithm and the computational Lagrangian algorithm. As the first median, both Myopic and Lagrangian algorithms selected the same distributor node "no. 16 " as the warehouse with the average distance of $5.2926 \mathrm{e}+004 \mathrm{~m}$ to satisfy a unit demand. In the case of selecting the two medians, while the Myopic algorithm proposed the node "no.16" and node "no.18" as best locations with $3.7918 \mathrm{e}+004 \mathrm{~m}$ average travelling distance, the Lagrangian algorithm selected node "no.18" and node "no.06" as best locations with $3.6673 \mathrm{e}+004 \mathrm{~m}$ average distance. In later case, optimum demand point allocation could be done by assigning nodes $1,2,3,4,7,14,18,19,20,21,23$ and 28 to the warehouse which will be located at node "no.18" and nodes $5,6,8,9,10,11,12,13,15,16,17,22,24,25,26,27,29,30,31,32$ and 33 to the warehouse which will be located at node "no. 16 ". The resulted computerized user interface provides drop down menu to select the number of warehouses to be located and then outputs the best nodes to be elected as warehouses and displays the best possible demand point allocation method.

Keywords: Facility Location; Optimization; Lagrangianalgorithm; P-Median Model; Supply Chain

1. Introduction

Optimum resource utilization can be considered as animportant phase of the supply chain management."Where to locate plants and distribution centres" is a location decision which is critical and most difficult of the decisions needed to realize an efficient supply chain. These location decisions are often fixed and difficult to change even in the intermediate term. Inefficient locations for production and assembly plants as well as distribution centres will result in excess costs being incurred throughout the lifetime of the facilities (Daskin, Snyder \&Berger, 2003).

The existing LPG supply chain has single storage plant and 33 different distributors out of its existing dealers who help to meet the needs of over 1500 dealers throughout the country as shown in figure 1 . As a consequence of this centralized distribution system number of inconveniences such as, significant waiting time at the vehicle queue, high transportation cost and inefficiencies due to weak highway system were emerged. The importance of reconfiguring the distribution network based on decentralized distribution strategy is highlighted.

Figure 1:LPG Supply Chain in Sri Lanka (area of our interest is displayed by the dashed oval)

According to Chopra and Meindl (2003, p.99) supply chain network design decisions should answer questions; what role should each facility play? , where should facilities be located? , how much capacity should be allocated to each facility? , what markets should each facility serve? and which supply sources should feed each facility?.In our research, we focused on obtaining optimum solutions for the aforementioned second and fourth questions regarding to facility location and capacity allocation decisions by programmed Myopic algorithm and highly mathematical Lagrangian algorithm.

We can summarize the objectives of this study as, proposing sites to locate warehouses, and allocating them into demand points, so as to minimize the total demand weighted distance between customers (demand points) and facilities (warehouses). Explicitly, it is expected to select distributors who are to be converted into warehouses and allocate those warehouses to remaining distributors in optimum manner.

2. Materials and Methods

Our work uses P-median model, which locates " p " facilities among " n " demand points and allocates each demand point to one of the facilities by assuming every demand point can be elected as a median. More specifically, we locate " p " warehouses among 33 distributors for serving "(33-p)" distributors while minimizing the sum of the shortest demand weighted distance between warehouses and distributors.

2.1 P-median Problem

Mathematically, the P-median problem can be summarized as follows (Daskin 1995,p.200-201): Inputs
$h_{i}=$ demand at node i
$d_{i j}=$ distance from node i to candidate site j
$\mathrm{P}=$ number of facilities to locate

Decision variables

$$
\begin{aligned}
& X_{j}= \begin{cases}1 & \text { if we locate at candidate node } j \\
0 & \text { if not }\end{cases} \\
& Y_{i j}= \begin{cases}1 & \text { if demand at node } i \text { are served by facility at node } j \\
0 & \text { if not }\end{cases}
\end{aligned}
$$

With this notation P-median problem can be formulated as:
Minimize $\quad \sum_{i} \sum_{j} h_{i} d_{i j} Y_{i j} \sum_{i} \sum_{\boldsymbol{j}} \boldsymbol{h}_{\boldsymbol{i}} \boldsymbol{d}_{\boldsymbol{i} \boldsymbol{j}} \boldsymbol{Y}_{\boldsymbol{i j}}$
Subject to

$$
\begin{array}{ll}
\sum_{j} Y_{i j}=1 & \forall i \\
\sum_{j} X_{j}=P & \\
Y_{i j}-X_{j} \leq 0 & \forall i, j \\
X_{j}=0,1 & \forall j \\
Y_{i j}=0,1 & \forall i, j
\end{array}
$$

The objective function (a) minimizes the total demand weighted distance between each demand node and the facility nearest to it.Constraint (b) specifies that each demand node i is assigning to one and only facility j.Constraint (c) states that exactly P facilities are to be located.Constraint (d) links the two decision variables. In essence, it requires that demand at nodei can only be assign to facility j, if there is a facility located at j. Constraint (e) and (f) ensure standard integrality conditions .

2.2 Myopic Algorithm for the P-median problem

The Myopic algorithm comes under the class of construction heuristics. Daskin (1995,p.209) statedthe followingapproach.
Step1:Initialize $k=0$ (k will count the number of facilities we have located so far) and $\quad X_{k}=\phi$, the empty set (X_{k} will give the location of the k facilities that we have located at each stage of the algorithm).

Step2: Increment k, the counter on the number of facilities located.
Step3: Compute $Z_{j}^{k}=\sum_{i} h_{i} d\left(i, j \cup X_{k-1}\right)$ for each node j which is not in the set X_{k-1}. Note that Z_{j}^{k} gives the value of the P-median objective function if we locate the k thfacility at node j, given that the first $k-1$ facilities are at the locations given in the set X_{k-1} (and node j is not part of that set).

Step4:Find the node $j^{*}(k)$ that minimizes Z_{j}^{k}, that is, $j^{*}(k)=\operatorname{argmin}_{j}\left\{Z_{j}^{k}\right\}$.Note that $j^{*}(k)$ gives the best location for the k th facility, given the location of the first $k-1$ facilities. Add node $j^{*}(k)$ to the set X_{k-1} to obtain the set X_{k}; that is, set $X_{k}=X_{k-1} \cup j^{*}(k)$.

Step5: If $k=P$ (i.e., we have located P facilities), stop; the set X_{p} is the solution to the myopic algorithm. If $k<P$, go to step 2.

2.3 Lagrangian Relaxation Algorithm

Following steps of Lagrangian relaxation algorithm can be adapted from Daskin (1995,p. 221-225).
Step 1: Relax one or more constraints by multiplying those by Lagrange multipliers and bringing the constraint(s) into objective function.By relaxing the constraint (b) and introducing variables called Lagrange multipliers $\left(\lambda_{i}\right)$, the objective function is modified and obtain the relaxed objective function.
$\underset{\lambda}{\operatorname{MAX}} \underset{X, Y}{\operatorname{MIN}} \sum_{i} \sum_{j} h_{i} d_{i j} Y_{i j}+\sum_{i} \lambda_{i}\left[1-\sum_{j} Y_{i j}\right]=\sum_{i} \sum_{j}\left(h_{i} d_{i j}-\lambda_{i}\right) Y_{i j}+\sum_{i} \lambda_{i}$
Step2:solve the relaxed problem by minimizing the objective function (a^{\prime}) for fixed values of the Lagrange multipliers (λ_{i}) subject to the constraints (b),(c),(d),(e) and (f).

Step3: Begin by computing the value of setting each of the X_{j} values to 1 . This value is given by $V_{j}=\sum_{i} \min \left\{0, h_{i} d_{i j}-\lambda_{i}\right\}$ for each candidate location j. Find the P smallest values of V_{j} and set the corresponding location variables $X_{j}=1$ and all other location variables $X_{j}=0$. Then set:

$$
Y_{i j}= \begin{cases}1 & \text { if } X_{j}=1 \text { and } h_{i} d_{i j}-\lambda_{i}<0 \\ 0 & \text { if not }\end{cases}
$$

Step 3: By ignoring the allocation variables, $Y_{i j}$, and setting the facilities at those sites for which $X_{j}=1$, find a primal feasible solution related to the Lagrangian solution. We then can let $\mathrm{S}=\left\{\mathrm{j} \mid X_{j}=1\right\}$; that is, S is the set of facility locations. For each demand node i, we then find $\hat{j}_{i}=\arg \min { }_{j \in s}\left\{d_{i j}\right\}$, that is, \hat{j}_{i} is the open facility that is closest to node i. We then set $\hat{Y}_{i k}=1$ if $\mathrm{k}=\hat{j}_{i}$ and $\hat{Y}_{i k}=0$ for all other locations k as before.(Note that we are using $\hat{Y}_{i k}$ to denote the feasible allocation of demands that results from the use of the location decisions in the relaxed problem.)Then evaluate the P-median objective function, $\sum_{i} \sum_{j} h_{i} d_{i j} \hat{Y}_{i j}$. This value is an upper bound on the solution. Clearly, the best such (smallest) value over all iterations of the Lagrangian relaxation procedure should be used as the upper bound.
Step 4: Compute a step size, t^{n}, at the nth iteration of the Lagrangianprocedure and then modify the Lagrange multiplier.
$t^{n}=\alpha^{n}\left(U B-L^{n}\right) / \sum_{i}\left\{\sum_{j} Y_{i j}^{n}-1\right\}^{2}$
Where,
$\mathrm{t}^{\mathrm{n}}=$ the step size at the $\mathrm{n}^{\text {th }}$ iteration of the Lagrangian procedure
$\alpha^{\mathrm{n}}=\mathrm{a}$ constant on the $\mathrm{n}^{\text {th }}$ iteration, with α^{1} generally set to 2
$\mathrm{UB}=$ the best upper bound on the P-median objective function
$\mathrm{L}^{\mathrm{n}}=$ the objective function of the Lagrangian function (a) on the nth iteration
$\mathrm{Y}_{\mathrm{ij}}{ }^{\mathrm{n}}=$ the optimal value of the allocation variable, $Y_{i j}$, on the nth iteration

The Lagrange multipliers are then updated according to the following equation:
$\lambda_{i}^{n+1}=\max \left\{0, \lambda_{i}^{n}-t^{n}\left(\sum_{j} Y_{i j}^{n}-1\right)\right\}$
Restrict the Lagrange multipliers to nonnegative values as long as all demands, h_{i}, and all distances, $d_{i j}$, are nonnegative. Obtain values of the lower bounds from the function (a ').
Step 5: If at any point in time, the lower bound is equal or very close to the upper bound, the optimal solution to the original problem is obtained and the algorithm terminates. The values of ashould not be less than 0.00005 . If the lower bound has not decreased after four consecutive iterations, set α to $\alpha / 2$. If none of the above stopping conditions are met, the implementation reiterates starting at Step 2.

2.4 Technical Computing

Even though the backgrounds behind these algorithms are highly mathematical, we propose graphical user interface to bridge complex computer programming codes to comprehensible interactive window. The interfaces were built with the aid of MATLAB graphical user interface development environment.

2.5 Input Data

A basic element in the formulation of location problems is the concept of distance. The distance between two location points ($\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$) and ($\mathrm{x}_{\mathrm{j}}, \mathrm{y}_{\mathrm{j}}$) is calculated by:
$d_{i j}=\left[\left(x_{j}-x_{i}\right)^{2}+\left(y_{j}-y_{i}\right)^{2}\right]^{1 / 2}$
We represent 33 different distributors' locations by nodes $1,2,3 \ldots 33$ and the existing storage plant by node "no.o'. Distances (in meters) from storage plant (node "no.o") to each distributor node i (where $i=1,2,3$,, 33) are :

do1	$=195,310$	do10	$=13,850$	do19	$=59,600$	do28	$=89,290$
do2	$=135,610$	do11	$=104,600$	do20	$=78,310$	do29	$=26,360$
do3	$=159,770$	do12	$=13,280$	do21	$=53,490$	do30	$=6,940$
do4	$=122,190$	do13	$=16,170$	do22	$=58,570$	do31	$=6,910$
do5	$=11,870$	do14	$=300,240$	do23	$=91,850$	do32	$=16,520$
do6	$=6,310$	do15	$=5,570$	do24	$=241,550$	do33	$=56,880$
do7	$=212,160$	do16	$=4,390$	do25	$=173,820$		

Annual demand (in kilograms) of each distributor node i,

$$
\begin{array}{ll}
\text { h1 } & =104352 \\
\text { h2 } & =210456 \\
\text { h3 } & =316608 \\
\text { h4 } & =186456 \\
\text { h5 }_{5} & =279456 \\
\text { h6 } & =342912 \\
\text { h7. } & =154656 \\
\text { h8 } & =220608 \\
\text { h9 } & =131808
\end{array}
$$

hio	$=$	333912	h19	$=$	280608	h28	$=$	279456
h11	$=$	323760	h2o	=	273408	h29	$=$	422064
h12	=	453216	h21	=	469824	h3o	=	537216
h13	=	260064	h22	=	258912	h31	$=$	226608
h14	=	103660.8	h23	=	304608	h_{32}	$=$	380064
h15	=	485520	h24	=	280608	h33	$=$	236299.2
h16	$=$	345216	h25	$=$	320064			
h17	$=$	255456	h26	$=$	282912			
h18	$=$	522960	h27	=	378912			

The average distance can be calculated by the following equation.
Average distance $=\mathrm{Z}_{\mathrm{j}}{ }^{\mathrm{n}}$ / Total demand in the network
Here,
n = number of medians
$\mathrm{Z}_{\mathrm{j}} \mathrm{n}=$ value of the P -median objective function if we locate the $\mathrm{n}^{\text {th }}$ median at node j

3. Results

Since the existing centralized distribution network has its one and only storage plant at node "no.o", the average distance travel $=6.4946 \mathrm{e}+004 \mathrm{~m}$. Approximately 65 km should be travelledto satisfy a unit demand. In our work, up to 10 number of nodes are selected which are to be converted into warehouses by two algorithms namely Myopic and Lagrangian. The table 1 depicts the results for first 10 Myopic medians for the LPG distribution network.

Table 1.Results Obtained from the Myopic Algorithm

Number of Warehouses to be Proposed	Average Distance to Travel * $10^{\wedge} 4 \mathrm{~m}, ~$	
1	5.2926	Selected Node/s
2	3.7918	16,18
3	3.0714	$16,18,24$
4	2.5547	$16,18,24,3$
5	2.2829	$16,18,24,3,7$
6	2.0232	$16,18,24,3,7,22$
7	1.7821	$16,18,24,3,7,22,27$
8	1.5689	$16,18,24,3,7,22,27,21$
9	1.4098	$16,18,24,3,7,22,27,21,14$
10	1.2738	$16,18,24,3,7,22,27,21,14,28$

Note that the Myopic algorithm holds the selected nodes which are to be converted to warehouses of the previous stage and pass those to the next step. Selected nodes and average distance for each solution of Lagrangian algorithm is given in table2.

Table 2.Results Obtained from the Lagrangian Algorithm

Number of Warehouses to be Proposed	Average Distance to Travel ${ }^{*} 10^{\wedge} 4 \mathrm{~m}$	Selected Node/s
1	5.2926	16
2	3.6673	18,6
3	2.9481	$24,18,31$
4	2.4314	$18,3,24,31$
5	2.1596	$3,24,18,7,31$
6	1.8918	$3,18,24,7,22,6$
7	1.6684	$3,24,18,21,7,22,6$
8	1.5093	$3,24,21,18,7,22,14,6$
9	1.351	$3,21,24,22,7,14,18,27,15$
10	1.215	$3,21,14,7,22,15,24,18,27,28$

The figure 2 compares solutions obtained from two algorithms. As the first median, when the number of warehouses to be located equals to one, both Myopic and Lagrangian algorithms select the same distributor node "no.16" as the best location with the average distance of $5.2926 \mathrm{e}+004 \mathrm{~m}$ to satisfy a unitdemand. Then,Lagrangian algorithm always results better average distances with respect to the Myopic algorithm.

Figure2:Comparison between Results Obtained from two Algorithms

Since, Lagrangian algorithm suggests better result set, assuming that those locations are converted into warehouses the following optimal warehouse allocation method (table 3) has been suggested.Each row of the table 3 illustrates number of warehouses to be located, selected nodes to be converted into warehouses and the best demand nodes allocation mechanism respectively. For instance, in the case of selecting the two medians, optimum demand point allocation could be done by assigning nodes $1,2,3,4,7,14,18,19,20,21,23$ and 28 to the warehouse which will be located at node "no.18" and nodes
$5,6,8,9,10,11,12,13,15,16,17,22,24,25,26,27,29,30,31,32$ and 33 to the warehouse which will be located at node "no.16" .

Table 3.Optimum Warehouse Allocation

Number of Warehouses	Selected Node/s	Demand Nodes Allocation								
		1	2	3	4	5	6	7	8	9
1	16	16	16	16	16	16	16	16	16	6
2	18, 6	18	18	18	18	6	6	18	6	6
3	24, 18, 31	18	24	18	18	31	31	18	31	31
4	18, 3, 24, 31	18	24	3	18	31	31	18	31	31
5	3, 24, 18, 7, 31	7	24	3	18	31	31	7	31	31
6	3, 18, 24, 7, 22, 6	7	24	3	18	6	6	7	6	22
7	3, 24, 18, 21, 7, 22, 6	7	24	3	18	6	6	7	6	22
8	3, 24, 21, 18, 7, 22, 14, 6	7	24	3	18	6	6	7	6	22
9	3, 21, 24, 22, 7, 14, 18, 27, 15	7	24	3	18	27	27	7	27	22
10	3, 21, 14, 7, 22, 15, 24, 18, 27, 28	7	24	3	28	27	27	7	27	22

Contd.

Number of Warehouses	Selected Node/s	Demand Nodes Allocation								
		10	11	12	13	14	15	16	17	18
1	16	16	16	16	16	16	16	16	16	16
2	18, 6	6	6	6	6	18	6	6	6	18
3	24, 18, 31	31	24	31	31	18	31	31	31	18
4	18, 3, 24, 31	31	24	31	31	3	31	31	31	18
5	3, 24, 18, 7, 31	31	24	31	31	3	31	31	31	18
6	3, 18, 24, 7, 22, 6	6	24	6	6	3	6	6	6	18
7	3, 24, 18, 21, 7, 22, 6	6	24	6	6	3	6	6	6	18
8	3, 24, 21, 18, 7, 22, 14, 6	6	24	6	6	14	6	6	6	18
9	3, 21, 24, 22, 7, 14, 18, 27, 15	27	24	27	15	14	15	15	27	18
10	$3,21,14,7,22,15,24,18,27,28$	27	24	27	15	14	15	15	27	18

Contd.

Number of Warehouses	Selected Node/s	Demand Nodes Allocation								
		19	20	21	22	23	24	25	26	27
1	16	16	16	16	16	16	16	16	16	16
2	18, 6	18	18	18	6	18	6	6	6	6
3	24, 18, 31	18	18	18	31	18	24	31	31	31
4	18, 3, 24, 31	18	18	18	31	18	24	31	31	31
5	3, 24, 18, 7, 31	18	18	18	31	18	24	31	31	31
6	3, 18, 24, 7, 22, 6	18	18	18	22	18	24	6	22	6
7	3, 24, 18, 21, 7, 22, 6	21	18	21	22	18	24	6	22	6
8	3, 24, 21, 18, 7, 22, 14, 6	21	18	21	22	18	24	6	22	6
9	3, 21, 24, 22, 7, 14, 18, 27, 15	21	18	21	22	18	24	15	15	27

$10 \quad 3,21,14,7,22,15,24,18,27,28 \quad 21 \quad 18 \quad 21 \quad 22 \quad 18 \quad 24 \quad 15$
Contd..

Number of Warehouses	Selected Node/s	Demand Nodes Allocation					
		28	29	30	31	32	33
$\mathbf{1}$		16	16	16	16	16	16
2		18	6	6	6	6	6
3		18	31	31	31	31	31
4		18	31	31	31	31	31
5		18	31	31	31	31	31
6		18	6	6	6	6	6
7	$3,24,18,21,7,22,6$	18	6	6	6	6	21
8	$3,24,21,18,7,22,14,6$	18	6	6	6	6	21
9	$3,21,24,22,7,14,18,27,15$	18	27	15	27	27	21
10	$3,21,14,7,22,15,24,18,27,28$	28	27	15	27	27	21

The following figure 3 shows the computerized user interface which provides drop down menu to select the number of warehouses to be located and then outputs the best nodes to be elected as warehouses and displays the best possible demand point allocation method.

Figure 3:Graphical User Interfacebefore and after Inserting Number of Warehoused to be Located

4. Conclusions and Future Directions

Our research work successfully addressed two supply chain network design questions, where should warehouses be located? and which warehouse should feed eachdistributor?. More specifically, distributors who are to be converted into warehouses were selected through two different algorithms and those warehouses were allocated to distributors in optimum manner. Comprehensible, interactive GUI facilitates by keeping decision makers away from complex mathematical location models and programming codes.

Even though the solutions given by Myopic algorithm may not be the optimal in some cases, simplicity of this algorithm forces to use this commonly. In addition, if there are facilities those are already established and cannot be relocated, while we are in need of locating one additional facility, Myopic algorithm approach is fruitful.

Obviously, more number of facilities ensure more benefits to their customers and less average distance to travel, but higher the facility costs. Since location decisions are long term and strategic, uncertainty of location model parameters should also be considered.Although the distance between twodistributor locations is not the straight line distance in real world, obtaining distance along highways between given locations is also impractical in nature.

References

Altekar, R. V. (2005).Supply chain management concepts and cases, New Delhi,India: PHI Learning Pvt. Ltd.

Arya,V.,Garg,N.,Khandekar,R., Meyerson,A.,Munagala,K. \&Pandit,V.,(2001).Local search heuristics for facility location problems. Retrieved June 15, 2010, from http://www.cs.ucla.edu/~awm/papers/lsearch.ps
Ballou, R. H. (2003). Business Logistics: Supply Chaiñ Management (5th ed.). New Jersey, USA: Prentice Hall.
Chopra, S., \&Meindl, P. (2004). Supply Chain Management (2nd ed.). Delhi, India: Pearson Education,Inc. Coyle,J.J.,Bardi,E.J.,\&Langley,C.J.(2003).The Management of Business logistics:A Supply Chain Perspective($7^{\text {th }}$ ed.).USA:South-Western.
Creating Graphical User Interfaces in MATLAB (2012)Retrieved January 10, 2012, from http://www.mathworks.in/discovery/matlab-gui.html
Daskin, M. S. (1995). Network and Discrete Location Models, Algorithms, and Applications. New York, USA: Wiley \& Sons.

Daskin,M.S.,Snyder,L.V.,\&Berger R.T.(2003). Facility Location inSupply Chain Design.RetrievedMay 10, 2010, from http://www.springerlink.com/index/H541677534645P14.pdf
Eroglu, E.,\&Keskinturk,T.(2006).Warehouse location problem with genetic algorithm,Retrieved June 20, 2010,fromhttp://www.academia.edu/229116/ Warehouse_Location_Problem_with_Genetic_Algorithm
Falcone,M.A.,Lopes,H.S. \&Coelho,L.S., 'Supply chain optimization using evolutionary algorithms',Journal of Computer Applications in Technology Vol.31,Nos 3/4, Retrieved May 28, 2010, from http://www.produtronica.pucpr.br/sip/conteudo/ProdBibliog/Leandro/Supply-artigo31.pdf
Grant, D.B.,Lambert,D.m.,Stock,J.R., \&Ellram, L.M.(2006).Fundamentals of Logistics Management, Berkshire, England: McGraw-Hill Higher Education.

Jacobs,F.R.,Chase,R.B.,\&Aquilano,N.J.(2009).Operations and Supply Management(12 ${ }^{\text {th }}$ ed.).New York,USA:McGraw-Hill.
Klose, A., \&Drexl, A.(2005).Facility location models for distribution system design. Retrieved June 26, 2010, from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.83.7234\&rep=rep1\&type=pdf
Klose,A.\&Drexl,A.(2003).Facility location models for distribution system design. Retrieved May 15 , 2010, from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.83.7234\&rep=rep1\&type=pdf
Love,R.F., Morris, J.G.,Wesolowsky,G.O. (1988). Facilities Location Models \& Methods. New York, USA: North-Holland.
Melo,M.T.,Nickel,S.,\&Saldanha-da-Gama,F.(2009).Facility location and supply chain management-A review . Retrieved April 25, 2010, from
http://132.70.58.206/_Uploads/dbsAttachedFiles/pharmaReview.pdf
Menzer,J.T.(2000).Supply Chain Management(2 ${ }^{\text {nd }}$ ed.).New Delhi,India:SAGE.
Rardin, R. L. (1998). Optimization in operations research. New Jersey, USA: Prentice Hall.
Skjott-Larsen,T.(2007).Managing the Global Supply Chain(3 ${ }^{\text {rd }}$ ed.).DK:Copenhagen Business School press.
Suomalainen, E.(2006). Multicriteria analysis and visualization of location allocation problems, Retrieved June 25, 2010, from http://www.researchgate.net/publication/ 46257356_Multicriteria_analysis_and_ visualizationof_location-allocation_problems
Zandin, K. B., \& Maynard, H. B. (2001). Maynard's Industrial Engineering Handbook (5th ed.). New York, USA: McGraw-Hill Professional.

