

UNIVERSITY OF RUHUNA

Faculty of Engineering

End-Semester 1 Examination in Engineering: August 2014

Module Number: ME 1202

Module Name: Fundamentals of Engineering Thermodynamics

[Three Hours]

[This question paper has Part A and Part B. Answer all questions in Part A and Part B. Steam tables are provided]

Part B - 01 hour

- Q1. A well-insulated cylinder is fitted with a frictionless leak proof piston and kept in vertical position. The cylinder contains 2 kg of water at 30°C, and, the piston exerts 8bar pressure on water. Then the heat supply is started from the bottom of the cylinder using a 0.8 kW electric heater until the piston rises through a distance of 20 cm. If the cross sectional area of the cylinder is 0.2 m²,
 - I. Find the final temperature of water.
 - II. Time taken to reach final position.
 - III. Draw the T-v Diagram relevant to this process.

Following data are given:

Specific volume of saturated liquid at 30° C is 1.0043×10^{-3} m³/kg. Specific volume of saturated liquid at 2bar is 1.08×10^{-3} m³/kg. Use $y = y_{for}$ to find any property of u, v, h, s of compressed liquid.

[10 marks]

- Q2. A heat engine operating between two reservoirs at 1200 K and 400 K is used to drive a heat pump. This heat pump extracts heat from the reservoir at 400K at a rate twice that which the engine rejects heat to a reservoir at temperature T. The efficiency of heat engine is 50% of the efficiency of a Carnot heat engine operating between same reservoirs. The Coefficient of Performance (COP) of heat pump is 40% of the efficiency of a Carnot heat pump operating between same reservoirs. If the rate of supply of heat to the engine is 60kW, determine;
 - I. The temperature of the reservoir to which the heat pump rejects heat, T.
 - II. Rate of heat rejection from the heat pump.

[10:	marks]
------	--------

----- End of Part B -----