Section Company of the Company of th

UNIVERSITY OF RUHUNA

Faculty of Engineering

End-Semester 3 Examination in Engineering: February 2023

Module Number: EE3301

Module Name: Analog Electronics (C-18)

Three Hours

[Answer all questions, each question carries 10 marks]
[Attach the question paper to your answer script. Failing which, you will get zero for Q3]

Q1 a) State three FET biasing mechanisms.

[2 Marks]

b) Draw the voltage divider biasing circuit for a N- Channel JFET.

[2 Marks]

- c) Figure Q1 shows a biased stabilized JFET amplifier with $g_m=2mS$, $r_{ds}=30~k\Omega$, $R_S=3k\Omega$, $R_D=R_L=2k\Omega$, $R_1=200k\Omega$, $R_2=800k\Omega$ and $r_i=5k\Omega$. The values of C_C and C_S are large and the amplifier is biased in the pinch off region.
 - i) Draw the small signal equivalent circuit.
 - ii) Find Zin
 - iii) Find $A_v = v_L/v_i$
 - iv) Find $A_i = i_L/i_i$

Figure Q1

[5 Marks]

d) What is the purpose of C_S capacitor in Figure Q1 circuit diagram?

[1 Mark]

Q2 a) Briefly explain the importance of current mirrors in analog IC designs.

[1 Mark]

b) Figure Q2 shows a basic current mirror. Prove that the source current *I* in the circuit is mirrored to the collector current of transistor T2.

Figure Q2

[2 Marks]

- c) i) Draw the circuit diagram of an ideal differential amplifier that has a collector resistors R_C , bias voltage $+V_{CC}$ and a constant current source I.
 - ii) Perform DC analysis for the circuit to derive expressions for the DC output voltages.

[3 Marks]

d) A BJT differential amplifier is biased from a 1 mA constant current source and includes a 200 Ω resistor in each emitter. The collectors are connected to V_{CC} via 12 k Ω resistors. A differential input signal of 0.1 V is applied between the two bases. Find the currents in the emitter i_e and the voltage v_{be} for each BJT

[4 Marks]

- Q3 Answer Q3 in the space provided and attach the question paper to your answer script.
 - a) Complete the circuit shown in Figure Q3a in the space provided, to receive the output $v_{out} = -(v_1 + v_2 + v_3)$ where v_1, v_2, v_3 are inputs. The feedback resistor value, $R_f = 10 \text{ k}\Omega$. Clearly mark the resistors and voltages in the diagram.

Figure Q3a

[2 Marks]

- b) For the following questions circle ONE answer that best fits the questions.

 [8 Marks]
 - i) Find the output V_{o} shown in the circuit in Figure Q3b i. Assume an ideal op-amp.

A) -3.8 V

B) - 5.7 V C) - 0.3428 V

D) 0.3428 V

E) None of the above

Figure Q3b - i

Page 3 of 7

- ii) Find the output voltage Vo in the circuit shown in Figure Q3b ii.
- A) -1 V
- B) 6 V
- C) 7V
- D) 6 V
- E) Insufficient Information

Figure Q3b - ii

- iii) For the difference amplifier circuit shown in Figure Q3b iii, determine the output voltage at terminal A.
- A) 6.07 V
- B) 15.45 V
- C) 18.13 V
- D) 6.07 V
- E) -3.54 V

Figure Q3b - iii

- iv) The output of an op-amp increases 8 V in 12 μs . The slew rate is __
 - A) 1.5V/μs

- B) $0.6 \text{ V/}\mu\text{s}$ C) $96 \text{ V/}\mu\text{s}$ D) $0.667 \text{ V/}\mu\text{s}$ E) None of these
- v) For an op-amp with negative feedback, the output is _
 - A) Magnitude is decreased
 - B) Fed back to the inverting input
 - C) Equal to the input
 - D) Increased
 - E) Fed back to the non-inverting input
- vi) Op-amp integrator uses ______ as a feedback element.
 - A) Inductor
 - B) A simple wire
 - C) Capacitor
 - D) Resistor
 - E) Any of the above

E) Top of the tail resistor

- xiv) A non-inverting amplifier has R_{in} = 1 k Ω and R_f =100 k Ω . The closed-loop voltage gain is _____. A) 100 B) 1.01 C) 1000 D) 101 E) 0.01
- xv)When a step-input is given to an op-amp integrator, the output will be a
 - A) Rectangular Wave
 - B) Triangular Wave
 - C) Ramp
 - D) Sinusoidal Wave
 - E) Not enough information
- xvi) For an op-amp having differential gain A_v and common mode gain A, the Common Mode Rejection Ratio (CMRR) is given by _____.
 - A) A_v+1/A
 - B) A/A_v
 - C) A_v+A
 - D) A_v/A
 - E) None of the above
- Q4 a) Predict how the operation of this operational amplifier circuit shown in Figure Q4a will be affected as a result of the following faults. Consider each fault independently (i.e. one at a time, no multiple faults occurring simultaneously).
 - i) Resistor R2 fails open:
 - ii) Solder bridge (short) across resistor R2:
 - iii) Resistor R1 fails open:
 - iv) Solder bridge (short) across resistor R1:
 - v) Broken wire between R1/R2 junction and inverting opamp input:

Figure Q4a

[5 Marks]

- b) Figure Q4b shows an op-amp circuit.
 - i) Calculate the output voltage V_{out}.
 - ii) Calculate the voltage drops across resistors R1 and R2.
 - iii) Calculate the overall voltage gain of this amplifier circuit (given by A), both as a ratio and in units of decibels (dB):

Figure Q4b

[5 Marks]

- Q5 a) Answer each of the following in relation to analog filters.
 - i) Explain the difference between high pass filter and a notch filter.
 - Explain the difference between passive analog filters and active analog filters, mentioning the components that are used.
 - iii) What does a bode plot indicate?

[5 Marks]

b) Find the bandwidth of the given filter in Figure Q5 and draw the amplitude response marking the cut off frequencies. C = 1.5 nF, $R_1 = 10 \text{ k}\Omega$, $R_2 = 1 \text{ k}\Omega$.

Figure Q5

[5 Marks]