

UNIVERSITY OF RUHUNA

Faculty of Engineering

End-Semester 5 Examination in Engineering: May 2023

Module Number: MN 5305

Module Name: Marine Power and Shipboard Electrical Systems

[Three Hours]

[Answer All Questions, each question carries 20 marks]

Instructions:

- 1. Start your answers to each question on a fresh page.
- Q1 (a) A shunt generator delivers 450A at 230V and the resistance of the shunt field and armature are 50Ω and 0.03Ω respectively. Calculate the generated E.M.F.

[3 Marks]

(b) Explain the types of DC Motors with principle of operation.

[2 Marks]

(c) A long-shunt compound generator delivers a load current of 50 A at 500 V and has armature, series field and shunt field resistances of 0.05 Ω , 0.03 Ω and 250 Ω respectively. Calculate the generated voltage and the armature current. Allow 1V per brush for contact drop.

[5 Marks]

(d) Explain the back electromotive force with its significance in DC motors.

[3 Marks]

- (e) A 220-V DC machine has an armature resistance of 0.5 Ω . If the full-load armature current is 20 A, find the induced E.M.F. when the machine acts as a,
 - (i) generator
 - (ii) motor.

[3 Marks]

(f) 230 V DC shunt motor takes a current of 40 A and runs at 1100 r.p.m. If armature and shunt field resistances are 0.25Ω and 230Ω respectively, then find the torque developed by the armature.

[4 Marks]

- Q2 (a) i. Explain the double revolving theory with mathematical analysis.
 - ii Explain why the single phase motor is not self-started.

[3 Marks]

(b) If a 4-pole 50Hz single phase induction motor is running with a slip of 3.4%, calculate the speed of the motor.

[2 Marks]

(c) Draw a single-phase motor's equivalent circuit with and without core loss.

[5 Marks]

- (d) A 4-pole 250W, 115V, 60Hz Capacitor start induction motor takes a full-load line current of 5.3A while running at 1760 r.p.m. If the full load efficiency of the motor is 64% find,
 - i. Motor slip
 - ii. Power factor (State whether lagging or leading)
 - iii. Full-load torque

[5 Marks]

(e) Describe 4 different types of single phase motor starting methods.

[5 Marks]

Q3 (a) State the main two types of rotors used in induction motors and distinguish the difference between these two.

[3 Marks]

(b) Explain the event motor slip with its importance.

[2 Marks]

(c) A 6-pole 3-Phase induction motor is connected to a 50Hz supply. Calculate the slip, if it is running at 970 r.p.m.

[4 Marks]

- (d) A 4-pole, 3-phase induction motor operates from a supply whose frequency is 50 Hz. Calculate,
 - The speed at which the magnetic field of the stator is rotating
 - ii. Speed of the rotor when the slip is 0.04
 - iii. The frequency of the rotor current when the slip is 0.03
 - iv. The frequency of the rotor with current at stand still

[5 Marks]

(e) A 10-Pole 3-Phase alternator is connected to an engine running at 600 r.p.m. It

supplies a 3 phase induction motor which has a full-load speed of 1440 r.p.m. Calculate the number of poles and slip of the motor (State any assumptions clearly).

[6 Marks]

Q4 (a) Distinguish the difference between the Cylindrical rotor and the Salient pole rotor.

[2 Marks]

(b) Explain the brushless excitation system (proper circuit diagram) of a synchronous motor.

[3 Marks]

(c) Draw per phase equivalent circuit for a synchronous generator.

[2 Marks]

(d) i. What is the voltage equation for a synchronous generator?

[2 Marks]

- ii. Explain the following conditions using phase diagrams,
 - I. Unity power factor
 - II. Lagging power factor
 - III. Leading power factor

[3 Marks]

(e) Briefly explain the open circuit characteristic (OCC) and short circuit characteristic (SCC) tests of a synchronous generator.

[3 Marks]

(f) Draw the Torque - Speed characteristic curve of a synchronous motor.

[2 Marks]

(g) State and explain the synchronous motor starting methods.

[3 Marks]

Q5 (a) Explain the function of a Cu cable.

[3 Marks]

(b) Describe the purpose of insulation in power cables stating the different types of insulation material used.

[3 Marks]

(c) Define the Temperature coefficient of the cable with it's importance.

[3 Marks]

(d) Distinguish the common types of cable testing methods.

[5 Marks]

- (e) Briefly explain the following types of testing
 - i. Continuity testing
 - ii. Insulation resistance testing
 - iii. High-voltage testing
 - iv. Load testing

[6 Marks]