UNIVERSITY OF RUHUNA

Faculty of Engineering

End-Semester 8 Examination in Engineering: July 2022

Module Number: EE8207 Module Name: High ’erformance Computing |

[Three Hours]

[Answer all questions, each question carries 10 marks.]

Ql.

Q2.

Briefly explain the Deacdlock-Free and Starvation-Free concepts in multi-
threaded environment.

[2 marks]
Write a program using Peterson’s algorithm which does the following.

i) The program should decrement a variable using two threads.

ii) The initial value of the variable is 1000 and should be decremented by
two using each thread.

iii) In each execution (in loop), program should print variable value and
thread id.

iv) The program terminates when the variable value is 0.

Note: State the programming language you have used to write the program.

<)

d)

b)

[4 marks]
Explain the “Arbitrator solution” in “Dining philosopher” problem.

[2 marks]
Describe how the solution proposed by K. Mani Chandy and J. Misra to the
Dining philosopher problem solves starvation.

[2 marks]

Describe the barrier synchronization method used in OpenMP programming
model.

[2 marks]

Write a program using OpenMP to calculate the addition of two matrices A and
B in parallel. Each matrix has M rows and N columns, where M =5 and N is a
positive integer value greater tharn 10.

[2 marks]

Page 1 of 6

Q8.

Q4.

b)

What is a loop work sharing construct in OpenMP?
[1 mark]
Describe what is a recursive mutex in POSIX threads.
[2 marks]
Write all possible outputs of the program shown in Figure Q2.e) written using
POSIX threads.

[3 marks]

Write all possible outputs of the MPI program shown in Figure Q3.a), if the
number of tasks is 2.

[2 marks]
Write a program using MPI which does the following. Assume there are even
number of tasks running and each task having an even number as the
rank (n) will send its rank to the task having the next higher rank (n+ 1). Tasks
having an odd number rank will print the values received from the other
process.

[3 marks]
What is the difference between blocking communication vs non-blocking
communication in MPI? :

[2 marks]
Describe the use of MPI_REDUCE function in the context of MPL
[1 mark]

Explain MPI_BCAST and MPI_SCATTER functions in the context of MPL
(Use diagrams if required)

[2 marks)]

Briefly explain the architectural difference between CPU and GPU.
[1 mark]

Write short notes on three memory types used in CUDA platform.
[3 marks]

Briefly explain Barriers and importance of implementing a barrier in CUDA
programming model.

[2 marks)]
Write a program using CUDA to convert an array containing temperature
readings in Fahrenheit to Celsius. Consider the size of the array as N. Use the
processing power of GPU for the conversion. Store the converted temperature
values in a new array and print it at the end of the program. The formula to
convert a temperature reading from Fahrenheit to Celsius in shown below.

cels = (fahr - 32.0) * 5.0/9.0.
[4 marks]
Page 2 of 6

Q5.

b)

d)

Use the code in Figure Q5.a) to answer the following questions.

i) Write a possible output of the code component.

[2 marks]
ii) Rewrite the code with following changes. At the end of the process, the
process having rank 0 should notify the process having rank 1 by
sending a message. Once the notification is received by rank 1 process,
it should print “completed” and exit the execution.
[3 marks]
Explain the advantage of using multiple low speed (clock cycles) processors
parallelly to solve a CPU intensive task instead using a high speed (clock
rate) single processor.
[1 mark]
Explain the difference between a threac! and a process.
[2 marks]
Suppose you need to simulate a cyclone (weather condition). For this you
require massive computational power. Which multiprocessing architecture
would you select out of shared memory, distributed memory and hybrid
memory? Justify your answer.
: [2 marks]

Page 3 ot 6

#include <stdlib.h>
#include <pthread.h>

void *priini_message_function(void *pir);

int main() {
pthread_t threadl, thread2;
int messagel = 123;
int message2 = 456;
pthread_attr t attr;
pthread attr_init(&attr);
pthrriad_create(&threadl, &attr, print_message function, (void *)&messagel);
pthread_create(&thread2, &attr, print_message_function, (void *)&mcssageZ);

pthread_join(threadl, NULL);
pthread join(thread2, NULL);

printf(“done™);
return 0;

void *print_message function(void * ptr) {
int ¥*message;
int index = 0;
message = (int*) ptr;
for(index = 0 ; index < 2; index++) {

printf("%d \n", *message + index);

Figurs Q2.¢): PCSIX threads rode

Page 4 of 6

#include "mpi.h"
#include <stdio.h>
#include <stdlib.h>

int main (int argc, char *argv[]) {
int numtasks, rank, dest, source, rc, count, tag=1;
char inmsg, outmsg='x';
MPI_Status Stat; MPI_Init(&arge,&argv);

MPI_Comm_size(MPI_COMM _WORLD, &numtasks);
MPI_Comm_rank(MPI_COMM WORLD, &rank);

if (rank == 0) {

dest = 1; source = |; outmsg="y";

‘re= MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI COMM_WORLD, &Stat);
rc = MPI_Send(&outmsg, |, MPI_CHAR, dest, tag, MPI COMM_WORLD);
prin:f(*The haracter %c sent to rank 1 \n”,ourmsg};

} else if (rank == 1) {

dest = 0; source = 0;

r¢c = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);

printf(“The character %c sent to rank 0 \n”, outmsg)

rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI COMM_ WORILD), &Stat);
: printf(“The character %c sent to rank 0. \n”,cutmsg);
}
MPI_Finalize();

Figure Q3.a): MPI program

#include "mpi.h"
#include <stdio.h>
#include <stdlib.h>
#include <omp.h>

Page 5 of 6

int main(int argc, char *argv[]) {
pthread t threadi;
int numtasks, rank, dest, source, rc, count, tag=1;
int inmsg;
MPI_Status Stat;
MPI_Init(&a~gc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &nuintasks);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
omp_set num_threads(4);

if (rank == 1) {
int payload = 4;
dest=0;
source = (;
rc = MPI_Send(&payload, 1, MPI INT, dest, tag, MPI _COMM_WORL D)
printf("message sent by-grocess with rank %d\n", rank):
}
else if(rank == 0){
dest = [;
source = 1;
rc = MPI_Recv(&inmsg, 1, MPI_INT, source, tag, MPI_COMM_WORLD, &Stat);
printf("Rank is %d, received number %d\n", rank, inmsg);
inmsg++;

#pragma omp parallel {
#pragma omp for
for(i=0;i<inmsg ; i++) {
int tid = omp_get_thread num();
printf("i = %d \n ",i);
}

}
MPI_Finalize();

}

Figure Q5.a): Sample code
Page 6 of 6

