

Development of Mechanistic Models for Nitrous Oxide Emissions from Two Soil Types Amended with Manure Composts at Different Ammonium Nitrogen Rates

T. D. P. Liyanage^{1*}, M. Maeda², H. Somura², M. Mori³, and T. Fujiwara⁴

¹Department of Soil Science, Faculty of Agriculture, University of Ruhuna, Sri Lanka
²Graduate School of Environmental and Life Science, Okayama University, Japan
³Agriculture Unit, Research and Education Faculty, Kochi University, Japan
⁴Graduate School of Engineering, Kyoto University, Japan

*liyanage@soil.ruh.ac.lk

Abstract

Existing process-based biogeochemical models do not sufficiently assess the impacts of manure composts on nitrous oxide (N2O) emissions due to a lack of model equations satisfactorily explaining N₂O emission mechanisms in manure compostamended soils. We aimed to develop mechanistic models for N₂O emissions in nitrification and denitrification processes from two soil types amended with two manure compost types at different initial ammonium N (NH₄⁺-N) rates. The data of N₂O emissions and NH₄⁺-N and Nitrate N (NO₃⁻-N) contents from an aerobic incubation experiment, which used cattle manure compost and mixed compostamended Kochi (K) and Ushimado (U) soils at three different initial NH4⁺-N rates were used for model development. The linear models for N₂O emissions were developed using parameters of soil NH₄⁺-N (nitrification) or NO₃⁻-N (denitrification) contents. In addition, N₂O emissions in nitrification showed a steady state with consumed NH4+-N contents. In the linear model, NH4+-N contents could satisfactorily evaluate N₂O emissions in nitrification in both manure compost-amended K and U soils regardless of the initial NH4⁺-N rates. The regression coefficient value of the linear model clearly showed the effects of soil and compost properties on N₂O emissions. In the model for N₂O emissions in denitrification, NO₃-N contents reasonably reflected N₂O emissions only in K soil. In conclusion, N₂O emissions in manure compost-amended soils can be assessed by NH4+-N (both K and U soils) and NO₃-N contents (only K soil).

Keywords: Cattle Manure, Kochi, Mixed Compost, Nitrification, Ushimado