

University of Ruhuna

Bachelor of Science General Degree Level II (Semester I) Examination

June 2015

Subject: Mathematics

Course Unit: MAT212 β / MPM2123 (Real Analysis I)

Time: Two (02) Hours

Answer Four (04) Questions only

- 1. a) State the Comparison Test (1 st type) for infinite series.

 Hence
 - (i) determine whether the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} + \sqrt{n+1}}$ is convergent or divergent;
 - (ii) show that the series $\sum_{n=1}^{\infty} \frac{2^n+1}{n2^n-1}$ is divergent.
 - b) Suppose that $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ have positive terms and $\frac{a_n}{b_n} \to l$ as $n \to \infty$, where $l \neq 0$ is finite. Show that
 - (i) $\sum_{n=1}^{\infty} a_n$ is convergent if $\sum_{n=1}^{\infty} b_n$ is convergent.
 - (ii) $\sum_{n=1}^{\infty} a_n$ is divergent if $\sum_{n=1}^{\infty} b_n$ is divergent.

Use the above test to determine whether the series $\sum_{n=1}^{\infty} \left[(n^3 + 1)^{\frac{1}{3}} - n \right]$ is convergent or divergent.

- 2. a) Show that the geometric series $1 + r + r^2 + ...$ with positive terms converges if r < 1 and diverges if $r \ge 1$.
 - b) Use Cauchy's Integral Test to show that the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges, if p > 1 and diverges if $p \le 1$.
 - c) Does the series $\sum_{n=1}^{\infty} \left(\frac{1}{n^5} + 1.5^n\right)$ converge? Justify your answer.
 - d) For which positive values of k can the Ratio Test be used to prove that $\sum_{n=1}^{\infty} \frac{k^n n!}{n^n}$ is convergent. Justify your answer.

- 3. Let $\sum_{n=1}^{\infty} a_n$ be a positive term series such that $\frac{a_n}{a_{n+1}} = \alpha + \frac{\beta}{n} + \frac{\gamma_n}{n^p}$, where $\alpha > 0$, p > 1 and $\{\gamma_n\}$ is a bounded sequence.
 - a) $\sum_{n=1}^{\infty} a_n$ converges if $\alpha > 1$ and diverges if $\alpha < 1$, whatever β may be.
 - b) for $\alpha = 1$, $\sum_{n=1}^{\infty} a_n$ converges if $\beta > 1$ and diverges if $\beta < 1$.

Discuss the convergence of the series

$$\sum_{n=1}^{\infty} \frac{(n!)^2 x^{2n+1}}{(2n)!}, \quad x > 0$$

4. a) Define the absolute convergence and conditional convergence of a given series

$$\sum_{n=1}^{\infty} a_n$$
. Determine whether the following series are absolutely convergent, conditionally convergent or divergent.

(i)
$$\frac{(-1)^n}{n^4+7}$$

(ii)
$$\frac{(-1)^n}{2n}$$

b) Explain why the alternating series test cannot be used to decide the convergence or divergence of the series

$$\sum_{n=1}^{\infty} (-1)^{n-1} \left(3 - \frac{1}{n}\right)$$

c) State the Abel's Test.

$$\sum_{n=1}^{\infty} \frac{\cos nx}{n^3}$$

- 5. a) Let f be a bounded function on [a, b]. Prove, in the usual notation, that
 - (i) $L(P, f) \le U(P, f)$;

(ii)
$$\int_a^b f dx \le \int_a^{\bar{b}} f dx.$$

[You may assume that $L(P, f) \leq U(P^*f)$, where P^* is a refinement of the partition P of [a, b].]

- b) Let f(x) = x, $x \in [0, 1]$ and $P_n = \left\{ \left[0, \frac{1}{n}\right], \left[\frac{1}{n}, \frac{2}{n}\right], \cdots, \left[\frac{i-1}{n}, \frac{i}{n}\right], \cdots, \left[1 \frac{1}{n}, 1\right] \right\}$ be the standard partition of [0, 1]. By using part a)(ii), show that f is integrable and $\int_{0}^{1} f dx = \frac{1}{2}$.
- c) Let f(x) be defined on [0,1] as follows:

$$f(x) = \begin{cases} (1 - x^2)^{\frac{1}{2}} & ; & x \text{ is rational.} \\ 1 - x & ; & x \text{ is irrational.} \end{cases}$$

Find the upper and lower Riemann integrals for the function f. Is f Riemann integrable on [0,1]? Justify your answer.

- a) Let f be a bounded function on the interval [a, b], and P and P^* be partitions of [a, b], where P^* is a refinement of P. Prove, in the usual notation, that $L(P, f) \leq L(P^*, f)$. What is the relation between U(P, f) and $U(P^*, f)$?
 - b) (i) Let f be a bounded function on [a, b]. Prove, in the usual notation, that the function f is Riemann integrable on [a, b] if and only if for every $\varepsilon > 0$ there exists a Riemann partition P of [a, b] such that $U(P, f) - L(P, f) < \varepsilon$.

(ii) Let
$$f: [3,6] \to \mathbb{R}$$
 be the function given by
$$f(x) = \begin{cases} 2; & 3 \le x < 4 \\ 1; & x = 4 \\ 4; & 4 < x \le 6. \end{cases}$$

For the partition $P_k = \{3, 4 - k, 4 + k, 6\}$, where 0 < k < 1, use the Riemann's criterion in b)(i) to determine the integrability of the function f.