University of Ruhuna

Bachelor of Science General Degree Level III (First Semester Examination)

June/July 2015

Subject: Mathematics

Course Unit: MAT312β/MPM3123(Real Analysis III)

Time: Two (02) Hours

Answer 04 Questions only.

- a) In the usual notation, prove the Cauchy-Schwarz inequality, $|\underline{\mathbf{x}}.\underline{\mathbf{y}}| \leq |\underline{\mathbf{x}}|||\underline{\mathbf{y}}||$, where $\underline{\mathbf{x}}, \underline{\mathbf{y}}, \in \mathbb{R}^n$. Using Cauchy-Schwarz inequality prove
 - (i) the triangle inequality, $\|\underline{\mathbf{x}} + \mathbf{y}\| \le \|\underline{\mathbf{x}}\| + \|\mathbf{y}\|$,
 - (ii) the pythagorian theorem, $\|\underline{\mathbf{x}} + \mathbf{y}\|^2 = \|\underline{\mathbf{x}}\|^2 + \|\underline{\mathbf{y}}\|^2$ and
 - (iii) if x, y and z are three positive real numbers such that $x + y + z \leq 3$ then
 - b) Let $\underline{\mathbf{x}}_0 \in \mathbb{R}^n$, and r > 0. Define the following terms:
 - (i) Open ball in \mathbb{R}^n with center $\underline{\mathbf{x}}_0$ and radius r.
 - (ii) closed ball in \mathbb{R}^n with center $\underline{\mathbf{x}}_0$ and radius r.
 - c) Explain whether each of the the following set is open or not.

(i)
$$A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 2\}$$
 (ii) $B = \{(x, y) \in \mathbb{R}^2 : 1 \le x^2 - 2\}$

(i)
$$A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 2\}$$
 (ii) $B = \{(x, y) \in \mathbb{R}^2 : 1 \le x^2 + y^2 < 2\}$ (iii) $C = \bigcup_{n=1}^{\infty} (-n, n)$ (iv) $D = \bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n}\right)$

d) Explain whether each of the the following set is closed or not.

(i)
$$E = \{\underline{\mathbf{x}} \in \mathbb{R}^n : \|\underline{\mathbf{x}}\| \ge 2\}$$
 (ii) $F = \{\underline{\mathbf{x}} \in \mathbb{R}^n : 1 \le \|\underline{\mathbf{x}}\| \le 4\}$

a) Find each of the following limit if it exists or show that the limit does not exist.

(i)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$$
 (ii) $\lim_{(x,y)\to(0,0)} \frac{x+y^2}{x^2+y^2}$ (iii) $\lim_{(x,y)\to(0,0)} \frac{xy^2+x^4}{(x^2+y^2)^{3/2}}$ (iv) $\lim_{(x,y)\to(0,0)} \frac{\sin xy}{x}$ (v) $\lim_{(x,y)\to(0,0)} \frac{\ln(x^2+y^2+1)}{x^2+y^2}$

b) (i) State the (ϵ, δ) definition for the continuity of the function $f: \mathbb{R}^n \to \mathbb{R}$ at the point $\underline{\mathbf{x}}_0 \in \mathbb{R}^n$.

(ii) Using the (ϵ, δ) approach to limits, show that the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & \text{if } (x,y) \neq (0,0) \\ 0, & \text{if } (x,y) = (0,0) \end{cases}$$

has limit 0 at the origin. Explain the continuity of f at the origin.

c) Discuss the continuty of the following function

$$f(x,y) = \begin{cases} \frac{x^2y}{x^4 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0, & \text{if } (x,y) = (0,0). \end{cases}$$
Is $f(x,y) = \begin{cases} f(x,y) \neq (0,0) \\ 0, & \text{if } (x,y) = (0,0). \end{cases}$

Is f(x, y) differentiable at (0, 0)? Explain your answer.

- 3. a) (i) Let $f: \mathbb{R}^n \to \mathbb{R}$. Define the directional derivative of f at $\underline{\mathbf{a}} \in \mathbb{R}^n$ in the direction of \mathbf{u}
 - (ii) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a differentiable function. In the usual notation show that $D_{\underline{\mathbf{u}}} f(\underline{\mathbf{a}}) = \nabla f(\underline{\mathbf{a}}) \cdot \underline{\mathbf{u}}$.
 - b) (i) Let $f(x,y) = 3x^2 y^2 + 4x$ and $\underline{\mathbf{u}} = \frac{\sqrt{3}}{2}\underline{\mathbf{i}} + \frac{1}{2}\underline{\mathbf{j}}$ be a unit vector. Evaluate $D_{\mathbf{u}}f(0,0)$ by using the definition of the directional derivative.
 - (ii) Let $f(x, y, z) = 3x^2 + xy 2y^2 yz + z^2$. Using the result in part a(ii), find the directional derivative of f at (1, -2, -1) in the direction of $2\mathbf{i} 2\mathbf{j} \mathbf{k}$.
 - c) Consider the function $f(x,y) = \frac{x^2}{2} + \frac{y^2}{2}$.
 - (i) Find the direction in which f(x, y) increases most rapidly at (1, 1).
 - (ii) Find the direction in which the directional derivative of f(x, y) at (1, 1) is 0.
- 4. a) Let $u = x^2 + 2xy + y^2$, $x = t \cos t$, $y = t \sin t$. Find $\frac{du}{dt}$ by two methods:
 - (i) using the chain rule,
 - (ii) expressing u in terms of t before differentiating.
 - b) Three ants A, B, C crawl along the positive x, y and z axes respectively. A and B are crawling at a constant speed of 1cm/s, C is crawling at a constant speed 3cm/s and they are all travelling away from the origin.
 - (i) If $A \equiv (x,0,0)$, $B \equiv (0,y,0)$ and $C \equiv (0,0,z)$ then show that the area of the traingle ABC is given by $\frac{1}{2}\sqrt{x^2y^2+y^2z^2+z^2x^2}$.
 - (ii) Find the rate change of the area of the triangle ABC when A is 2cm away from the origin while B and C are 1cm away from the origin.
 - c) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a differentiable function at (x_0, y_0) . Show that

- (i) the tangent plane to the surface f(x, y, z) = 0 at the point (x_0, y_0, z_0) is given by the equation $f_x(x_0, y_0, z_0)(x - x_0) + f_y(x_0, y_0, z_0)(y - y_0) + f_z(x_0, y_0, z_0)(z - z_0) = 0$ and
- (ii) the normal line to the surface at (x_0, y_0, z_0) is given by the equation $\frac{(x-x_0)}{f_x(x_0,y_0,z_0)} = \frac{(y-y_0)}{f_y(x_0,y_0,z_0)} = \frac{(z-z_0)}{f_z(x_0,y_0,z_0)} \text{ in symetric form}$
- d) For the surface given by the equation $z = x^2 3y^2 + xy$, find the equations of the
 - (i) tangent plane and
 - (ii) normal line
 - at the point (1, 1, -1) on the surface.
- 5. a) (i) Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a differentiable function defined by $f(x_1, x_2, ..., x_n) = f(\underline{\mathbf{x}}) = (f_1(\underline{\mathbf{x}}), f_2(\underline{\mathbf{x}})..., f_m(\underline{\mathbf{x}}))$. Write down the Jacobian matrix of f at the point $\underline{\mathbf{x}}$.
 - (ii) A function $f: \mathbb{R}^2 \to \mathbb{R}^3$ is defined by the equation $f(x,y) = (\sin x \cos y, \sin x \sin y, \cos x \cos y)$. Determine the Jacobian matrix Df(x,y)of f at the point (x, y).
 - b) Assume that f is a differentiable function at each point $(x,y) \in \mathbb{R}^2$. Let g_1, g_2 be defined on \mathbb{R}^3 by the equations $g_1(x,y,z) = x^2 + y^2 + z^2$, $g_2(x,y,z) = x + y + z$, and let g be the vector valued function given by $(g_1(x,y,z), g_2(x,y,z))$. Let h be the composite function $h = f \circ g$. In the usual notaion, show that

$$\|\nabla h\| = 4(D_1 f)^2 q_1 + 4(D_1 f)(D_2 f) q_2 + 3(D_2 f)^2$$

c) Let f be the function defined by

Let
$$f$$
 be the function defined by
$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2}, & \text{if } (x,y) \neq 0\\ 0, & \text{if } (x,y) = (0,0) \end{cases}$$
Show that $f(0,0) \neq f(0,0)$

- Show that $f_{xy}(0,0) \neq f_{yx}(0,0)$
- d) Suppose that $\sin xy + \sin yz + \sin xz = 1$, defines the variable z as a function of x and y. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
- 6. a) Find and classify the extreme values (if any) of the following function: $f(x,y) = 6x - 4y - x^2 - 2y^2$
 - b) Prove that if a rectangular box without a top is to be made from a given amount of material, then the box will have the largest possible volume if it has a square base and an altitude whose length is half that of the base.
 - c) (i) Show that $\iint_{\mathbb{R}^2} e^{-(x^2+y^2)} dx dy = \pi$
 - (ii) Evaluate $\iint_D (x+2y)dxdy$, where D is the region bounded by the parabolas $y=2x^2$ and $y=1+x^2$.