University of Ruhuna

Bachelor of Science General Degree (Level III) Semester I Examination - June/July 2015

Subject: Mathematics

Course unit: MAT313\beta /MMS3113 (Mathematical Statistics II)

Time:Two (02) Hours

Answer four (04) Questions only

- 1. Let $\hat{\theta}$ be a point estimator for parameter θ . Explain what is meant by saying that, $\hat{\theta}$ is an unbiased estimator for θ .
 - a) Let Y_1, Y_2, \ldots, Y_n be a random sample of size n from a population with mean μ and the variance σ^2 .
 - (i) Show that $\bar{Y} = \frac{\sum_{i=1}^{n} Y_i}{n}$ is an unbiased estimator for μ and $S^2 = \frac{\sum_{i=1}^{n} (Y_i \bar{Y})^2}{(n-1)}$ is an unbiased estimator for σ^2 .
 - (ii) Let $T = \sum_{i=1}^{n} a_i Y_i$.

Show that T is an unbiased estimator of μ , if $\sum_{i=1}^{n} a_i = 1$; where $a_1, a_2,...,a_n$ are constants.

- b) Let X_1, X_2, \ldots, X_n be a random sample of size n from a population with the mean μ and the variance σ_1^2 and Y_1, Y_2, \ldots, Y_n be a random sample of size n from a population with the mean μ and the variance σ_2^2 .

 If the two samples are independent,
 - (i) show that $\omega \bar{X} + (1 \omega) \bar{Y}$ is an unbiased estimator of μ ; where $0 \le \omega \le 1$,

$$ar{X} = rac{\sum_{i=1}^{n} X_i}{n} ext{ and } ar{Y} = rac{\sum_{i=1}^{n} Y_i}{n}.$$

(ii) show that the variance of this estimator is a minimum when $\omega = \frac{\sigma_2^2}{\sigma_1^2 + \sigma_2^2}$. Find the value of the minimum variance.

2. a) Let Y_1, Y_2, \ldots, Y_n be a random sample of size n from a population with the probability density function

$$f_Y(y,\theta) = \begin{cases} \frac{2}{\theta} - \frac{2y}{\theta^2} & \text{, if } 0 < y < \theta, \\ 0 & \text{, otherwise} \end{cases}$$

Find

- (i) E(Y)
- (ii) the moment estimator of θ .
- b) Explain the method of maximum likelihood estimation.
 - (i) Let Y_1, Y_2, \ldots, Y_n be a random sample of size n from a population with probability density function

$$f_Y(y,\alpha) = \begin{cases} 2\alpha y e^{-\alpha y^2} & \text{, if } y > 0, \alpha > 0, \\ 0 & \text{, otherwise} \end{cases}$$

Find the maximum likelihood estimator of α .

(ii) Let Y_1, Y_2, \ldots, Y_n be a random sample of size n obtained from a Poisson distribution with probability mass function

with probability mass function
$$Pr(Y = y) = \frac{e^{-\lambda}\lambda^y}{y!}$$
, $y=0,1,2,...$

Find the maximum likelihood estimator of λ .

3. a) Define the property consistent, of an estimator $\hat{\theta_n}$ of the parameter θ , used in parametric point estimation.

Let Y_1, Y_2, \ldots, Y_n be a random sample of size n from a distribution with probability density function,

density function,
$$f_Y(y,\theta) = \begin{cases} \theta y^{\theta-1} & \text{if } 0 < y < 1, \quad \theta > 0, \\ 0 & \text{, otherwise} \end{cases}$$

Show that
$$\bar{Y} = \frac{\sum_{i=1}^{n} Y_i}{n}$$
, is a consistent estimator of $\frac{\theta}{\theta+1}$.

b) State Cramer-Rao inequality for the variance of an unbiased estimator of a function $\tau(\theta)$ of a parameter θ , in the usual notation.

When does the equality hold?

Let Y_1, Y_2, \ldots, Y_n be a random sample of size n obtained from a normal distribution with known mean μ and unknown variance σ^2 .

Let
$$T = \frac{\sum_{i=1}^{n} (Y_i - \mu)^2}{n}$$
.

Show that T is a minimum variance unbiased estimator of σ^2 . Obtain Cramer-Rao lower bound for the variance of T.

(a) State Neymass factorization theorem for a sufficient statistic. Let Y_1, Y_2, \ldots, Y_n be a random sample of size n from a population with probability density function $f_Y(y, \theta) = a(\theta)b(y)exp^{[c(\theta)d(y)]}$.

Show that $\sum_{i=1}^{n} d(Y_i)$ is a sufficient statistic for parameter θ .

- (b) Let Y_1, Y_2, \ldots, Y_n be a random sample of size n obtained from a Poisson distribution with probability mass function $Pr(\hat{Y}=y) = \frac{e^{-\lambda}\lambda^y}{y!}$, y=0,1,2,.....; where λ is an unknown parameter.
 - (i) $S = \sum_{i=1}^{n} Y_i$ is a sufficient statistic for λ ,

- (ii) $\bar{Y} = \frac{\sum_{i=1}^{n} Y_i}{n}$ is an unbiased estimator for λ and
- (iii) \bar{Y} is the minimum variance unbiased estimator for λ .

In the usual notation, state the theorem you used.

5. Let $X_1, X_2, \ldots, X_{n_1}$ be a random sample of size n_1 from a normal distribution with unknown mean μ_1 and the unknown variance σ^2 . Let $Y_1, Y_2, \ldots, Y_{n_2}$ be a random sample of size n_2 from a normal distribution with unknown mean μ_2 and the same unknown variance σ^2 . Assuming that the two samples are independent and the sample sizes are small, explain how you would construct $100(1-\alpha)\%$ confidence interval for $(\mu_1 - \mu_2)$.

It is needed to compare two kind of fertilizers used in 'Rambutan' plantation. In the plantation some plants were treated with the fertilizer A and the rest were with the fertilizer B. From the plantation, a random sample of five plants treated with fertilizer A and a random sample of five plants treated with fertilizer B, were selected and the harvest was recorded as follows.

ſ	No. of fruits of plants treated with fertilizer A	850	833	848	796	803
-	No. of fruits of plants treated with fertilizer B	771	789	792	827	786

Construct 95% confidence interval for the difference between the mean number of fruits of plants treated with fertilizer A and fertilizer B. State your assumptions clearly.

- 6. a) Explain the following terms used in Statistical Hypothesis testing.
 - (i) Type I error
 - (ii) Type II error
 - (iii) Power function
 - b) Let Y be a random variable of a distribution whose probability density function is,

$$f_Y(y,\theta) = \begin{cases} \frac{1}{\theta}e^{\frac{-y}{\theta}} & \text{, if } y > 0, \quad \theta > 0, \\ 0 & \text{, otherwise} \end{cases}$$

A single observation from this distribution is used to test the null hypothesis $H_0: \theta = 10$, against the alternative $H_1: \theta \neq 10$.

If the null hypothesis is rejected when the observed value is less than 8 and greater than 12, find the probability of Type I error.

Also find the probability of Type II error if $\theta=12$. Obtain the power function of the test.