University of Ruhuna

Bachelor of Science Special Degree in Mathematics- Level I (Semester I Examination)

June/July 2015

Course Unit: MSP3144 (Mathematical Methods in Physics and Engineering)

Time: Three (03) Hours

Answer six (06) Questions selecting two (02) from each section

Section A

- a) Define $\mathcal{L}{F(t)}$, the Laplace transform of a function F(t), denoted by f(s).
 - b) If $\mathcal{L}{F(t)} = f(s)$ then show that

(i)
$$\mathcal{L}\lbrace e^{at}F(t)\rbrace = f(s-a), \ s>a$$
 (ii) $\mathcal{L}\lbrace \sinh at\rbrace = \frac{a}{s^2-a^2}, \ s>|a|$

(i)
$$\mathcal{L}\lbrace e^{at}F(t)\rbrace = f(s-a), \ s>a$$
 (ii) $\mathcal{L}\lbrace \sinh at\rbrace = \frac{a}{s^2-a^2}, \ s>|a|$ (iii) $\mathcal{L}\lbrace tF(t)\rbrace = -\frac{d}{ds}f(s)$ (iv) $\mathcal{L}\lbrace \frac{F(t)}{t}\rbrace = \int_s^\infty f(u)du$

(i)
$$\mathcal{L}\left\{(2e^{3t}\sin 4t\right\}$$
, (ii) $\mathcal{L}\left\{t\sinh 4t\right\}$,

c) Find the following Laplace transformations:
 (i)
$$\mathcal{L}\left\{(2e^{3t}\sin 4t\right\}$$
, (ii) $\mathcal{L}\left\{t\sinh 4t\right\}$,
 (iii) $\mathcal{L}\left\{\frac{\sinh t}{t}\right\}$, (iv) $\mathcal{L}\left\{\frac{e^{-2t}-e^{-3t}}{t}\right\}$,

$$(\mathbf{v}) \quad \mathcal{L}\left\{\int_0^t \frac{\sin u}{u} du\right\}.$$

- a) Define the inverse Laplace transform $\mathcal{L}^{-1}\{f(s)\}$ of f(s).
 - b) Show, in the usual notation, that $\mathcal{L}^{-1}\left\{f'(s)\right\} = -tF(t)$

$$\mathcal{L}^{-1}\left\{f'(s)\right\} = -tF(t)$$

c) Find following inverse Laplace transformations:

Find following inverse Laplace transformations:
(i)
$$\mathcal{L}^{-1}\left\{\frac{2s^3 + 10s^2 + 8s + 40}{s^2(s^2 + 9)}\right\}$$
 (ii) $\mathcal{L}^{-1}\left\{\frac{s + 2}{s^2(s + 3)}\right\}$ (iii) $\mathcal{L}^{-1}\left\{\ln\left(1 + \frac{1}{s^2}\right)\right\}$.

(ii)
$$\mathcal{L}^{-1} \left\{ \frac{s+2}{s^2(s+3)} \right\}$$

(iii)
$$\mathcal{L}^{-1}\left\{\ln\left(1+\frac{1}{s^2}\right)\right\}$$

d) State the convolution theorem for the Laplace transformations. Apply convolution theorem to find the following inverse Laplace Transforations

(i)
$$\mathcal{L}^{-1}\left\{\frac{1}{(s+1)(s^2+1)}\right\}$$
 (ii) $\mathcal{L}^{-1}\left\{\frac{1}{(s^2+1)^2}\right\}$.

(ii)
$$\mathcal{L}^{-1}\left\{\frac{1}{(s^2+1)^2}\right\}$$

- a) Let $\mathcal{L}{Y(t)} = y(s)$. Show, in the usual notation, that
 - (i) $\mathcal{L}\{Y'(t)\} = sy(s) Y(0)$
 - (ii) $\mathcal{L}\{Y''(t)\} = s^2 y(s) sY(0) Y'(0)$
 - b) Using the Laplace transform method solve the following system of ordinary different equations:

$$\frac{dX}{dt} + \frac{dY}{dt} = t$$

$$\frac{d^2X}{dt^2} - Y = e^{-t}$$

$$; X(0) = 3, Y(0) = 0, X'(0) = -2.$$

Section B

1. a) Show, in the usual notation, that

(i)
$$\mathcal{L}\left\{\frac{\partial U(x,t)}{\partial t}\right\} = su(x,s) - U(x,0)$$

(ii)
$$\mathcal{L}\left\{\frac{\partial^2 U(x,t)}{\partial t^2}\right\} = s^2 u(x,s) - sU(x,0) - U_t(x,0)$$
.

(iii)
$$\mathcal{L}\left\{\frac{\partial U(x,t)}{\partial x}\right\} = \frac{du(x,s)}{dx}$$
 and

(iv)
$$\mathcal{L}\left\{\frac{\partial^2 U(x,t)}{\partial x^2}\right\} = \frac{d^2 u(x,s)}{dx^2}$$
.

b) The faces x = 0 and x = 1 of a slab material for which thermal diffusivity k = 1 are kept at temperature 0 and 1 respectively until the temperature distribution becomes u = x. After time t=0 both faces are held at temporature 0. Determine the temperature distribution at time t.

You may assume that

$$\mathcal{L}^{-1}\left\{\frac{\sinh x\sqrt{s}}{s\sinh a\sqrt{s}}\right\} = \frac{x}{a} + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n}{n} e^{-\frac{n^2\pi^2t}{a}} \sin\left(\frac{n\pi x}{a}\right).$$

a) For m > 0, n > 0, the Beta function, B(m, n) is defined as: 2.

$$B(m,n) = \int_0^1 x^{m-1} (1-x)^{n-1} dx.$$

- (i) Using Laplace Transform methods show in the usual notation that $B(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$
- (ii) Use the above result to show that $2\int_{0}^{\pi/2} \sin^{2m-1}\theta \cos^{2n-1}\theta d\theta = B(m,n)$.

b) Show followings using the results in part (a)

(i)
$$\int_0^1 x^{3/2} (1-x)^2 dx = \frac{\pi}{16}$$
 (ii) $\int_0^2 x^4 \sqrt{4-x^2} dx = 2\pi$

(iii)
$$\int_0^{\pi/2} \sin^4 \theta \cos^6 \theta d\theta = \frac{3\pi}{512} \qquad \text{(iv) } \int_0^{\pi/2} \frac{d\theta}{\sqrt{\tan \theta}} = \frac{\pi}{\sqrt{2}}.$$

c) Use Laplace transform methods to show that,

$$\int_0^\infty \cos x^2 dx = \frac{\sqrt{\pi}}{2\sqrt{2}}.$$

[In the usual notation you may assume that $\Gamma(p)\Gamma(p-1) = \frac{\pi}{\sin n\pi}$, 0 .]

a) Suppose that f(x) is a periodic function with the period 2L and its Fourier series is given by $f(x) = \frac{a_0}{2} + \sum_{n=0}^{\infty} \left(a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right)$ for -L < x < L; where $a_0 = \frac{1}{L} \int_{-L}^{L} f(x) dx$, $a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx$ and $b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx$ for $n = 1, 2, 3, \dots$ Show that f

$$\frac{1}{L} \int_{-L}^{L} (f(x))^2 dx = \frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$$

b) Obtain the Fourier sine expansion of $f(x) = x(\pi - x)$, $0 \le x \le \pi$ in the form: $f(x) = \frac{8}{\pi} \left(\frac{\sin x}{1^3} + \frac{\sin 3x}{3^3} + \frac{\sin 5x}{5^3} + \dots \right).$

$$f(x) = \frac{8}{\pi} \left(\frac{\sin x}{1^3} + \frac{\sin 3x}{3^3} + \frac{\sin 5x}{5^3} + \dots \right).$$

- (i) $\sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{(2n-1)^3} = \frac{\pi^3}{32},$
- (ii) $\sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{(2n-1)^6} = \frac{\pi^6}{960}$ and
- (iii) $\sum_{1}^{\infty} \frac{1}{n^6} = \frac{\pi^6}{945}$.

Section C

a) The Legendre differential equation is given by $(x^2 - 1)\frac{d^2y}{dx^2} + 2x\frac{dy}{dx} - n(n+1)y = 0$. Using the recurrence formula

$$(x^{2}-1)p'_{n}(x) = n\{xp_{n}(x) - p_{n-1}(x)\}.$$

Show in the usual notation that $xp'_n(x) - p'_{n-1}(x) = np_n(x)$; where $p_n(x)$ are the Legendre polynomials of order n.

Hence show that

$$p'_{n+1}(x) - p'_{n-1}(x) = (2n+1)p_n(x).$$

Deduce that

$$\int_{x}^{1} p_{n}(x)dx = \frac{1}{(2n+1)} (p_{n-1}(x) - p_{n+1}(x)).$$

b) Show that the Rodrigue's formula

$$p_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n$$

is a solution of the Legendre differential equation; where n is a positive integer.

2. a) The generating function of the Bessel function $J_n(x)$ is given by

$$e^{\frac{x}{2}(t-\frac{1}{t})} = \sum_{n=0}^{\infty} t^n J_n(x).$$

By substituting $t = e^{i\phi}$, prove that the Bessel functions have the integral representation

$$J_n(x) = \frac{1}{\pi} \int_0^{\pi} \cos(n\phi - x\sin\phi) d\phi.$$

Deduce that

(i)
$$J_0(x) = \frac{2}{\pi} \int_0^1 \frac{\cos xt}{\sqrt{1-t^2}} dt$$
,

(ii)
$$J'_n(x) = \frac{1}{2} \{ J_{n-1}(x) - J_{n+1}(x) \}.$$

b) Show that

$$J_n(x) = \frac{1}{\sqrt{\pi}\Gamma(n+1/2)} \left(\frac{x}{2}\right)^n \int_0^{\pi} \cos(x\sin\phi) \cos^{2n}\phi d\phi$$

[You may assume that $J_{-n}(x) = (-1)^n J_n(x)$]

3. The Hermit polynomial $H_n(x)$ of degree n associated with the Hermit differential equation

$$\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + 2ny = 0$$

is defined by

$$e^{2tx-t^2} = \sum_{n=0}^{\infty} \frac{H_n(x)t^n}{n!}$$

for all integral values of n and all real values of x.

Show that

(i)
$$H_n(x) = e^{x^2} (-1)^n \frac{d^n}{dx^n} (e^{-x^2})$$

(ii)
$$H_{n+1}(x) = 2xH_n(x) - 2nH_{n-1}(x), n \ge 1$$

(iii)
$$\int_{-\infty}^{\infty} e^{-x^2} H_n(x) H_m(x) dx = \begin{cases} 0, & \text{if } m \neq n \\ \sqrt{\pi} 2^n n!, & \text{if } m = n. \end{cases}$$

Hence deduce that

$$\int_{-\infty}^{\infty} x^2 e^{-x^2} [H_n(x)]^2 dx = \sqrt{\pi} 2^n n! \left(n + \frac{1}{2} \right)$$