University of Ruhuna

Bachelor of Science General Degree Level II (semester I) Examination – July 2015

Subject: Mathematics

Course Unit: MAT211\(\beta/\text{MPM2113}\) (Linear Algebra)

Time: Two (02) hours

Answer <u>04 questions</u> only

- (1) (a) Let $A = [a_{ij}]$ be a non-singular n-square matrix. Prove, in the usual notation, that
 - (i) $A(adj(A)) = |A|I_n$ and
 - (ii) $|(adj(A))| = |A|^{n-1}$.

Using the result in part (i), deduce that $A^{-1} = \frac{(adj(A))}{|A|}$.

Verify (i) and (ii) above for the matrix

$$A = \begin{pmatrix} 1 & 0 & 2 \\ 4 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix}.$$

(b) Define an elementary matrix.

Prove that every non-singular square matrix A is expressible as a product of elementary matrices.

Find the inverse of the matrix

$$A = \begin{pmatrix} 1 & 1 & -1 \\ 0 & -2 & 4 \\ 2 & 4 & -5 \end{pmatrix}$$

using elementary row operations.

(2) (a) Define normal form of a matrix A.

Reduced the matrix

$$A = \begin{pmatrix} 1 & 1 & 1 & 3 \\ 2 & 1 & -3 & -6 \\ 3 & -3 & 1 & 1 \end{pmatrix}.$$

to its normal form.

Hence find the rank of A.

(b) State the necessary and sufficient conditions that should be satisfied by a non-empty subset W of a vector space V to be a subspace of V.

Define a basis S for a vector space V.

Determine which of the following subsets is a subspace of \mathbb{R}^3 ?

(i)
$$W = \{(x_1, x_2, 5) \mid x_1, x_2 \in \Re\}$$

(ii)
$$W = \{(x_1, x_2, x_1 + x_2) \mid x_1, x_2 \in \mathbb{R}\}\$$

For the case of W is a subspace find a basis for W and also find the dim(W).

(3) (a) A function T: $\mathcal{P}_5 \rightarrow \mathcal{P}_3$, where \mathcal{P}_n is the linear space of polynomials of the nth order, is defined by

$$T(f(x)) = \frac{d^2}{dx^2}(f(x)).$$

Show that

- (i) T is linear,
- (ii) $\{1,x\}$ is a basis for Ker(T),
- (iii) $\{1,x,x^2,x^3\}$ is a basis for Im(T),

Verify that $\dim(\mathfrak{P}_5) = \dim(\ker(T)) + \dim(\operatorname{Im}(T))$.

(b) Explain what is meant by a diagonalizable matrix.

Let
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{pmatrix}$$
.

Find a matrix P such that $P^{-1}AP$ is a diagonal matrix. Justify your answer.

(4) State clearly the condition under which a system of non-homogeneous linear equation

$$A_{m \times n} X_{n \times 1} = D_{m \times 1}$$

will have

- (i) a unique solution
- (ii) no solutions
- (iii) Infinitely many solutions.

(a) Show that the system of linear equations

$$2x-2y+3z = a$$

$$3x + 2y + z = b$$

$$4x + 6y - z = c$$

has no solution unless c = 2b - a.

(b) Determine the values of α and β for which the system of linear equations

$$3x+y+2z = 3$$

$$2x-3y-z = -3$$

$$x+2y+\alpha z = \beta$$

has

- (i) a unique solution
- (ii) no solutions
- (iii) Infinitely many solutions.

Find the solutions in both cases this linear system is consistent.

(5) Define what is meant by an Eigen value and corresponding Eigen vector of a matrix A_{nxn} .

Show that, if A and B are similar n×n matrices, then they have the same eigenvalues.

Consider the matrix

$$A = \begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{pmatrix}.$$

(i) Show that the characteristic equation of matrix A is given by

$$\lambda^3 - 12\lambda - 16 = 0.$$

- (ii) Show that $\lambda=4$ is one Eigen value of the matrix.
- (iii) Find the other Eigen values of the matrix.
- (iv) Find the corresponding Eigen Vectors of the matrix.
- (v) Find the basis for the each of the Eigen spaces.

(6) State the Cayley-Hamilton Theorem.

Explain what is meant by the minimal Polynomial of an $n \times n$ matrix A.

Let an 3×3 matrix be

$$A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

- (i) Find the Characteristic equation of A.
- (ii) Verify the Cayley-Hamilton Theorem for A.
- (iii) Use the Cayley-Hamilton theorem to find the inverse of A
- (iv) Find the characteristic roots of A.
- (v) Hence find the minimal polynomial of A.
- (vi) Use Cayley-Hamilton theorem to find A⁵.
- (vii) State whether the matrix A is derogatory or non-derogatory giving the reason.
