CONTENTS

	Page No.
ABSTRACT	V
ACKNOWLEDGEMENT	ix
LIST OF TABLES	xxii
LIST OF FIGURES	XXV

Chapter 1

1.1 Introduction	د .	1
1.2 Objectives of the study		6

Chapter 2

2. Literature	8
2.1 Gum sources	8
2.1.1 Xanthan gum	8
2.1.2 Gum Arabic	. 9
2.1.3 Gum ghatti	10
2.1.4 Guarn gum	10
2.1.5 Tamarind seed gum	. 11
2.1.6 Composition of gums	12
2.1.6.1 Chemical composition	13
2.1.6.2 Physical composition	13
2.1.6.2.1 Solubility	13
2.1.6.2.2 Stickiness	14
2.1.7 Extraction of gum	14
2.2 Thickening agents	15
2.2.1 Carrageen	15
2.2.2 Alginates	15
2.2.3 Agar	16
2.2.4 Pectin	16

F		
	.	ST.C
	JKI	LANKA COLLECT
		and the second

xi

2.2.5 Starch	17
2.2.6 Polysaccharides	17
2.3 Conformations	18
2.3.1 Ribbon type conformation	18
2.3.2 Hollow helix type conformation	18
2.3.3 Crumpled type conformation	19
2.3.4 Loosely joined conformation	19
2.3.5 Oligosaccharides	20
2.4 Binders	21
2.5 Mucilaginous material	21
2.6 Plant materials used to extract gum and mucilage materials	21
2.6.1 Davulkurudu	21
2.6.2 Okra or Lady's finger	22
2.6.3 Durian seed	23
2.7 Cereal food product and their improvers	24
2.7.1 Rice and rice flour	24
2.7.2 Wheat and wheat flour	25
2.7.2.1 Gluten and starch	26
2.7.2.2 Gluten development	26
2.7.2.3 Gluten viscosity	26
2.7.2.4 Gluten elasticity	27
2.7.2.5 Alpha amylase and beta amylase	27
2.7.3 Shortening agent	28
2.7.4 Microbial extract	28
2.8 Mechanical extrusion process of noodles	29
2.8.1 Rice used in manufacturing of noodles	29
2.8.1.1 Extrusion cooking	30
2.9 Wheat used in manufacturing of noodles	31
2.9.1 Mixing ingredients	31
2.9.2 Dough resting	32
2.9.3 Rolling or sheeting	32

2.9.4 Slitting the sheet	33
2.9.5 Steaming	33
2.9.6 Drying or frying	34
2.10 Bread manufacturing process	35
2.10.1 Wheat bread	36
2.10.1.1 Fermentation process	36
2.10.1.2 Bread stalling	36
2.10.1.3 Stalling inhibiters	37
2.10.2 Rice bread	38
2.11 Banana	38
2.11.1 Banana for fast food industry	39
2.11.1.1 Browning reaction	39
2.11.1.2 Enzymatic browning	39
2.11.1.3 Chemical leavening agent for fast food	40
2.12 Manufacturing of fruit products	41
2.12.1 Fruit preparation	41
2.12.2 Fruit pulp	42
2.12.2.1 Pulp extraction of Katuanona	43
2.12.2.2 Pulp extraction of Nutmeg	44
2.12.2.3 Passion fruit rind extraction	45
2.13 Drying techniques used in drying of vegetative parts of plant	46
2.13.1 Drying system	46
2.13.1.1 Sensible heating and cooling at constant humidity ratio	46
2.13.1.2 Heating and humidifying	47
2.13.1.3 Cooling with de-humidifying	47
2.13.1.4 Drying	47
2.13.2 Refrigeration	48
2.13.2.1 Mechanical refrigeration system	. 48
2.13.2.2 Refrigeration cycle	49
2.13.2.3 The refrigeration cycle as a series of thermo dynamic process	50
2.12.2.3.1 The condenser and evaporator	50

.

2.13.3 Freeze drying	51
2.14 Blanching process for food preservation	51
2.14.2 Steam blanchers	52
2.14.1 Hot water blanchers	52
2.15 Evaluation of sensory properties	53
2.15.1 Test method	54
2.15.1.1 Difference test	54
2.15.1.2 Paired comparison test	54
2.15.1.3 Duo trio test method	55
2.15.1.4 Tri angle test	55
2.15.1.5 Hedonic rating test	56
2.15.1.5.1 F-distribution	56
2.15.1.5.2 Analysis of variance	57
2.15.1.5.3 Kruskal–Wallies one way analysis of variance	57

Chapter 3

3. Methodology

3.1 Scope of the study	58
3.1.1 Identification of plants	58
3.1.2 Classification of identified plants	59
3.1.3 Segregation of identified plants	59
3.2 Preliminary extraction methods to quantify extractability	59
3.2.1 Gel and gel bearing materials	59
3.2.1.1 Davulkurudu leaves	59
3.2.1.2 Green gram seed	59
3.2.1.3 Black gram seed	. 60
3.2.1.4 Durian seed	60
3.2.1.5 Passion fruit husk	60
3.2.2 Mucilaginous material	61

•

3.2.2.1 Walpenala leaves	61
3.2.3 Gum and gum bearing materials	61
3.2.3.1 Beli fruit	61
3.2.4 Thickening agent	61
3.2.4.1 Katuanona fruit	61
3.2.4.2 Papaya fruit	62
3.2.4.3 Nutmeg rind	62
3.2.4.4 Ceasalpiniya seed	62
3.2.5 Fabrication of machinery to extract and preserve plant part	63
3.2.5.1 Preliminary study in fabrication of a dryer	63
3.2.5.2 Fabrication of the dryer	64
3.2.5.2.1 Major component of the dryer	64
3.2.5.2.1.1 The cooling system	64
3.2.5.2.1.2 Evaporator	65
3.2.5.2.1.3 Compressor	65
3.2.5.2.1.4 Air distributor	65
3.2.5.2.1.5 The suction fan	66
3.2.5.2.1.6 Drying chamber	66
3.2.5.2.1.6 The trays	66
3.2.5.3 Testing of the dryer in preservation of DKL and Durian seed	66
3.2.5.3.1 Drying of Davulkurudu leaves	67
3.2.5.3.2 Drying of Durian seed	67
3.2.6 The Agitator	67
3.2.7 Fabrication of a extruder to extrude noodles with plant extract	68
3.2.7.1 Prototype design	68
3.2.7.1.1 Methodology	68
3.2.7.1.2 Slitting process	68
3.2.7.1.3 Extrusion process	68
3.2.8 Fabrication of the extruder	71
3.2.8.1 The extrusion chamber	71
3.2.8.2 The extrusion device	72

xv

3.2.8.3 The vertical tube	72
3.2.8.4 The extrusion plate	72
3.2.8.5 The conveyer belt	73
3.2.8.6 Measuring efficiency of the extruder	73
3.2.9 Extraction of plant extract for food industry	73
3.2.9.1 Extraction of jell from Davulkurudu leaves	74
3.2.9.2 Extraction of jell from Durian seed	74
3.2.9.3 Extraction of mucilaginous material from lady's finger	74
3.2.9.4 Extraction of stabilizing material from passion fruit husk	75
3.2.9.5 Extraction of thickening and filling materials from Nutmeg rind	75
3.2.9.6 Extraction of thickening materials from Katuanona fruit	76
3.2.10 Testing suitability of plant extract for cereal food industry	76
3.2.11 Measuring properties of food products	77
3.2.11.1 Elasticity of noodles	77
3.2.11.2 Strength of noodles	77
3.2.11.3 Gruel content of the noodles	78
3.2.11.4 Cooking time of noodles	78
3.2.11.5 Broken percentage of noodles	79
3.2.11.6 Staling effect of bread	79
3.2.11.7 Stickiness of the dough	80
3.2.11.8 Strength of cooked and raw noodles strings	. 80
3.2.11.9 Bulk density of bread	81
3.2.11.10 pH value of jell	81
3.2.11.11 Moisture content of bread	82
3.2.11.12 Leavening index of bread	82
3.2.11.13 Methodology used in selecting of a sensory panel	83
3.2.11.13.1 Determination of actual threshold level	83
3.2.11.13.2 Determination of different threshold level	83
3.2.11.13.3 Analyzing the data	84
3.2.12 Application of plant extract in food industry	85
3.2.12.1 Application of DKL extract in pasta product industry	86

.

x

3.2.12.1.1 Manufacturing of wheat noodles to improve productivity	87
3.2.12.1.1.1 Materials and equipment used for the study	87
3.2.12.1.2 Manufacturing of rice noodles to improve productivity	89
3.2.12.1.2.1 Materials and equipment used for the study	90
3.2.12.2 Application of Davulkurudu leaf extract in bakery industry	91
3.2.12.2.1 Manufacturing of wheat bread	91
3.2.12.2.1.1 Identification of a desirable gel source for bakery industry	92
3.2.12.2.2 Manufacturing of rice bread	94
3.2.12.2.2.1 Material and method	95
3.2.12.2.2.2 Leavening time	96
3.2.12.2.2.3 Bulk density	96
3.2.12.2.2.4 Organoleptic property	96
3.2.12.3 Extraction and utilization of microbial extract	97
3.2.12.3.1 Collection of Yeast extract	97
3.2.12.4 Development of a supplementary product for fast food industry	100
3.2.12.4.1 Development of a supplementary product for potato fingers	100
3.2.12.4.1.1 Discolored product	101
3.2.12.4.1.2 Poor mouth feels	101
3.2.12.4.1.3 Higher cooking time	101
3.2.12.4.1.4 Design of experiment	101
3.2.12.4.1.5 Materials and method	102
3.2.12.4.1.6 Enzymes inactivation process of raw banana	102
3.2.12.4.1.7 Preparation of banana fingers	102
3.2.12.4.1.8 Preparation of samples	102
3.2.12.4.1.9 Treatment combinations	104
3.2.12.4.1.10 Measuring cooking time	104
3.2.12.4.1.11 Measuring organoleptic properties	104
3.2.12.4.2 Manufacturing of ready to cook string hoppers	105
3.2.12.4.2.1 Methodology	106
3.2.12.4.2.2 Physical properties of well dried string hoppers	106
3.2.12.4.2.3 Incorporation of plant extracts	107

3.2.12.4.2.4 Incorporation of leavening agent	107
3.2.12.4.2.5 Productive drying system	107
3.2.12.4.2.6 Material and method	108
3.2.12.4.2.7 Re-hydration process of ready to cook string hoppers	110
3.2.12.5 Application of plant extract in fruit and culinary industry	110
3.2.12.5.1 Manufacturing of sauce	110
3.2.12.5.1.1 Determination of actual threshold levels	111
3.2.12.5.1.2 Adjusting the pH level of the mixture	111
3.2.12.5.1.3 Adjusting the Brix value of the mixture	112
3.2.12.5.1.4 Adjusting the spread ability	112
3.2.12.5.1.5 Development of a sensory panel	112
3.2.12.5.2 Manufacturing of fruit nectar	113
3.2.12.5.2.1 Determination of properties of xanthan gum / D.seed extract	114
3.2.12.5.2.2 Determination of quantity of D.seed extract to par with X.gum	114
3.2.12.5.2.3 Preparation of treatments with Durian seed extracts	115
3.2.12.5.2.4 Evaluation of organoleptic properties	115

Chapter 4

4. Results and Discussion

4.1 Identification of plants	117
4.1.1 List of plants identified by the survey for plant extract	117
4.1.2 Approximate extractability, heat stability and type of extracts	118
4.2 Segregation of plants with respect to magnitude of extract,	
physical properties and availability	119
4.2.1 Plants and fruit extract	119
4.2.2 Classification of plants	120
4.2.2.1 Classification of plants with respect to biological features	120
4.2.2.2 Classification of plants with respect to chemical properties and heat	
Stability	121

`

`

	122
4.3 Evaluation of efficacy of drying processes	
4.4 Evaluation of two prototype designs in fabricating an extruder	123
4.4.1 Evaluation of efficacy of prototypes	124
4.4.2 Measuring efficiency of the rice noodles extruder	124
4.5 Testing suitability of plant extract for food industry	125
4.5.1 Physical properties of plant extracts of selected plant	125
4.5.2 Preliminary testing	125
4.6 Application of plant extract in food industry	126
4.6.1 Application of DKL extract in pasta products industry	126
4.6.1.1 Manufacturing of wheat noodles	126
4.6.1.1.1 Dropping wastage of noodles	126
4.6.1.1.2 Properties of wheat flour dough prepared with DKL extract	128
4.6.1.1.3 Gruel content of noodles	130
4.6.1.1.4 Cooking time of noodles with and without DKL extract	131
4.6.1.1.5 Organoleptic properties of noodles prepared with and without DKL	
Extract	132
4.6.1.1.6 Sensory profile of the treatments	134
4.6.1.1.7 Cost effectiveness in using of DKL extract in manufacturing	
of noodles	135
4.6.1.2 Manufacturing of rice noodles	137
4.6.1.2.1 Elasticity of rice noodles	137
4.6.1.2.2 Strength of rice noodles	138
4.6.1.2.3 Gruel content of dry noodles	140
4.6.1.2.4 Cooking time of rice noodles	140
4.6.1.2.5 Organoleptic properties of rice noodles	141
4.6.1.2.6 Sensory profile of the treatments	143
4.6.1.2.7 Cost effectiveness of noodles prepared with DKL extracts	144
4.6.2 Application of DKL extract in bakery industry	144
4.6.2.1 Manufacturing of wheat noodles	145
4.6.2.1.1 Leavening time of the bread	145

4.6.2.1.2 Bulk density and pH value of baked bread	147
4.6.2.1.3 Organoleptic properties of the bread	148
4.6.2.1.4 Sensory profile of the bread	152
4.6.2.1.5 Staling effect on bread prepared with DKL extract	152
4.6.2.1.6 Cost effectiveness of bread prepared with DKL extracts	154
4.6.2.2 Manufacturing of rice bread	156
4.6.2.2.1 Leavening time of the bread	156
4.6.2.2.2 Bulk density of the bread	157
4.6.2.2.3 Organoleptic properties of rice bread prepared with DKL extract	158
4.6.2.2.4 Sensory profile of the bread	160
4.6.2.2.5 Cost effectiveness of bread prepared with DKL extracts	161
4.6.3 Application of microbial extract in bakery industry	162
4.6.3.1 Manufacturing of bread	162
4.6.3.1.1 Leavening efficiency of the bread	162
4.6.3.1.2 Leavening time of the bread	163
4.6.3.1.3 pH value and bulk density of the bread	167
4.6.3.1.4 Cost effectiveness in using of microbial extract	167
4.6.4 Development of supplementary food product for fast food industry	169
4.6.4.1 Manufacturing of banana fingers for potato fingers	169
4.6.4.1.1 Cooking time	169
4.6.41.2 Organoleptic properties of the treatments	170
4.6.4.1.3 Sensory profiles of the treatments	176
4.6.4.1.4 Cost effectiveness in making of banana fingers	177
4.6.4.2 Manufacturing of ready to cook string hoppers	178
4.6.4.2.1 Stability during re-hydration	178
4.6.4.2.2 Organoleptic properties of two treatments as against fresh	
string hoppers	181
4.6.4.2.3 Analysis of cost effectiveness of the treatments	184
4.6.5 Application of fruit extract in fruit and culinary product industry	186
4.6.5.1 Manufacturing of sauce	186
4.6.5.1.1 Actual threshold level	186

4.6.5.1.2 Adjustment of pH value of Tomato pulp and Nutmeg rind	
extracts mixture	186
4.6.5.1.3 Adjustment of Brix value	187
4.6.5.1.4 Adjustment of the spread ability	187
4.6.5.1.5 Final adjustment of the recipe	187
4.6.5.1.6 Developed recipe for Tomato sauce	187
4.6.5.1.7 Organoleptic properties of the treatments	188
4.6.5.1.8 Physical properties of the treatments	192
4.6.5.1.9 Chemical properties of the treatments	193
4.6.5.1.10 Cost effectiveness of treatment A as against commercial product	194
4.6.5.2 Manufacturing of fruit Nectar	194
4.6.5.2.1 Properties of Xanthan gum and Durian seed extract	195
4.6.5.2.2 pH variation of Durian seed extract incorporated Nectar	
as against commercial recipe (Xanthan gum incorporated)	195
4.6.5.2.3 Brix variation of the treatments during shelf life	196
4.6.5.2.4 Organoleptic properties of the treatments	197
4.6.5.2.5 Layer separation property of the two treatments	198
4.6.5.2.6 Cost effectiveness in incorporation of Durian seed extract	
into Nectar	200
Conclusion	201
Publication	205
Bibliography	207
Appendices	217

-

•

t

. ç

List of tables

Page	No.
------	-----

2.1 Classification of gums	12
2.2 Advantages and limitations of different types of conventional blanches	52
3.1 Weightage of quality parameters of noodles	69
3.2 Scale for percentage of broken	69
3.3 Scale for percentage of disintegrate noodles	70
3.4 Scale for appearance of cook noodles	70
3.5 Scale for occurrence of gruel during re-cooking process	70
3.6 Scale for moisture content of dry noodle	71
3.7 Mean scores for three different treatments	92
3.8 Treatment combination of banana fingers	104
3.9 Composition of eight treatment combinations	109
3.10 Requirement of Durian seed extracts to prevent layer separation	
of Nectar	115
4.1 Segregation of identified plants by the survey	119
4.2 Classification of identified plants in accordance with biological features	120
4.3 Classification of plants in accordance chemical properties and	
heat stability	121
4.4 Classification of identified plants in accordance with their compositions	122
4.5 Jell forming ability of DKL leaves subjected for different drying	
Treatments	122
4.6 Jell forming ability of Durian seed subjected for different	
drying treatments	123
4.7 Physical parameters of the noodles produced with the	
preliminary design	123
4.8 Efficiency of prototype design	124
4.9 Performance of the fabricated extruder	124
4.10 Properties of jell of different plant materials	125
4.11 Occurring of dropping wastage of noodles	127
4.12 Physical properties of noodles prepared with DKL extract	129

ι.

.

4.13 Gruel percentage of noodles prepared with DKL extracts	130
4.14 Cooking time of noodles prepared with DKL extract	131
4.15 Responses of respondents for noodles prepared with DKL extract	132
4.16 Elasticity of noodles prepared with DKL extract	137
4.17 Strength of rice noodles prepared with water and DKL extract	139
4.18 Gruel content of rice noodles prepared with and without	-
DKL extract	140
4.19 Cooking time of rice noodles	140
4.20 Organoleptic properties of rice noodles prepared with &	
without DKL extract	141
4.21 Cost effectiveness of the treatments	144
4.22 Leavening index of dough samples prepared with and	
without DKL extract	145
4.23 pH and Bulk density of bread prepared with and without	
DKL extract	147
4.24 Organoleptic properties of bread prepared with and	
without DKL extract	148
4.25 Elasticity of bread as against period of storage	153
4.26 Leavening time of rice bread	156
4.27 Bulk density of bread prepared with and without DKL extract	157
4.28 Organoleptic properties of bread prepared with and without	¢
DKL extract	158
4.29 Leavening efficiency of the treatments	162
4.30 ANOVA table for leavening efficiency	163
4.31 Leavening time of the treatments	163
4.32 Relation ship between leavening time and leavening index	166
4.33 Bulk density and pH value of bread	167
4.34 Cooking time of banana fingers	169
4.35 Mean variation of different treatments-color	171
4.36 Mean variation of different treatments-taste	172
4.37 Mean variation of different treatments-smell	173

174
176
178
180
182
182
183
188
191
192
193
194
195
196
197
198
199

1¢

١

List of figures

2.1 Chemical structure of Xanthan gum	8
2.2 Chemical structure of gum Arabic	9
2.3 Chemical structure of gum Ghatti	10
2.4 Chemical structure of Tamarind seed gum	11
2.5 Chemical structure of Carrageens	15
2.6 Chemical structure of Alginates	16
2.7 Chemical structure of Agar	16
2.8 Chemical structure of Pectin	17
2.9 Chemical structure of Starch	17
2.10 Chemical structure of Ribon type conformation	18
2.11 Chemical structure of Hollow-Helix type conformation	18
2.12 Chemical structure of Crumpled type conformation	19
2.13 Chemical structure of loosly joined type of conformation	19
2.14 Chemical structure of cyclodextrin	20
4.1 Ring structure of polysaccharide	128
4.2 Sensory properties of wheat noodles prepared with	
and without DKL extract	135
4.3 Elasticity of noodles	138
4.4 Development of strength of rice noodles	139
4.5 Sensory properties of rice noodles prepared with and	
without DKL extract	143
4.6 Relation ship between leavening index and leavening time	146
4.7 Sensory properties of wheat bread prepared with and	
without DKL extract	152
4.8 Relation ship between elasticity of rice bread and	
period of storage	153
4.9 Sensory profile of rice bread prepared with and	
without DKL extract	160

4.10 Relation ship between leavening index and leavening time	166
4.11 Sensory profile of Banana fingers and potato fingers	176
4.12 Sensory profile of sauce prepared with Nutmeg rind	
and Katuanona pulp	191