CONTENTS

ACKNOWLEDGEMENT	I
ABSTRACT	II
CONTENTS	IV
LIST OF FIGURES	IX
LIST OF TABLES	XI
LIST OF PLATES	XII
ABRIVIATIONS	XIII
1. INTRODUCTION	1
2. LITERATURE REVIEW	4
2.1. Historical Background of cinnamon	4
2.2. Other types of cinnamon	6
2.3. Botany of the cinnamon	8
2.3.1. Branches	8
2.3.2. Leaves	8
2.3.3. Inflorescence and flowers	9
2.3.4. Fruits	9
2.3.5. Pollination	9
2.4. Cytology	9
2.5. Uses	10
2.5.1. Cooking use	10
2.5.2. Medicinal use	11
2.5.3. Religious use	. 12
2.6. Cultivation of cinnamon	13
2.7. Common propagation methods of cinnamon	13
2.8. <i>In-vitro</i> propagation	14
2.9. Micro propagation	15
2.10. Undefined organic constituents	15
2.11. Miscellaneous supplements	. 16
2.12. Dealing with problems	16
2.12.1. Media problems	16
2.12.2. Contaminants	18
2.12.2.1. Contamination by bacteria and fungi	18
2.12.2.2. Contamination by viral pathogens	18

2.13. Control of bacterial and lungal contaminations by antibiotics in plant	
tissue culture	19
2.14. Antioxidants	19
2.15. Surfactants	20
2.16. Clonal propagation of woody plants	20
2.17. Difficulties with woody species	22
2.17.1. Oxidative browning	23
2.17.2. Control measures	24
2.18. Stages during clonal tissue culture	25
2.18.1. Establishment of aseptic culture	26
2.18.1.1. Surface sterilization of woody plants	28
2.19. Proliferation of shoots	33
2.19.1. Multiplication by apical and axillary shoots	33
2.20. Some examples for proliferation of woody plants	34
2.21. Rooting in-vitro	40
2.22. Some examples for rooting of woody plants	40
2.23. Acclimatization and field transfer	43
2.24. Abnormalities in tissue cultured plantlets	44
2.25. Acclimatization procedure	45
2.26. Acclimatization in-vitro	47
2.27. Some examples for hardening of woody plants	50
3. MATERIALS AND METHODS	52
3.1. General procedure	52
3.1.1. Cleaning and sterilization of glassware, metal tools and paper mats	52
3.1.2. Preparation of stock solutions	52
3.1.3. Preparation of media	52
3.1.4. Culture procedure	53
3.1.4.1. Culture procedure of <i>in-vitro</i> propagation through embryos	53
3.1.4.2. Culture procedure of <i>in-vitro</i> propagation through axillary buds	54
3.1.5. Culture maintenance	54
3.1.6. Experimental design and statistical analysis of data	54
3.2. <i>In-vitro</i> propagation through embryos	55
3.2.1. Experiment 1 – Effect of surface sterilization on establishment of	
in-vitro embryo culture	55

5.2.2. Experiment 2. Identification of the type of explain on <i>in-vitro</i>	
establishment of embryo culture	56
3.2.3. Experiment 3 - Study on growth pattern of <i>in-vitro</i> embryo cultures	57
3.2.4. Experiment 4 – Effect of various antioxidants and absorbents on	
establishment and growth of cinnamon in-vitro seedlings	58
3.2.5. Experiment 5 – Effect of Gibberellic Acid (GA ₃) on growth	
performances of embryo culture	59
3.2.6. Experiment 6 – Effect of yeast extract and source of mother plant	
on cinnamon embryo culture	60
3.2.7. Experiment 7 – Effect of activated charcoal on tap root elongation of	
in-vitro cultured embryo explants.	61
3.2.8. Experiment 8 – Effect of α-Napthalene Acetic Acid (NAA)	
and 6-Benzylaminopurine on adventitious root induction / elongation	
of in-vitro micro shoots	62
3.2.9. Experiment 9 – Acclimatization of cinnamon plantlets	63
3.3. <i>In-vitro</i> propagation of cinnamon through axillary buds collected	
from green house grown plantlets	63
3.3.1. Experiment 10 – Selection of surface sterilent (0.1% HgCl ₂) exposure	
time for establishment of axillary buds collected from green-house	
grown seedlings	63
3.3.2. Experiment 11 - Effect of antioxidants and absorbents on in-vitro	
establishment of axillary bud cultures of cinnamon	64
3.3.3. Experiment 12 – Selection of appropriate basal medium for establishment	-
of axillary buds collected from green house grown seedlings	65
3.3.4. Experiment 13: Multiple bud formation on axillary buds collected	
from green-house grown plants	66
3.3.5. Experiment 14: Adventitious roots induction on axillary bud cultures of	
cinnamon	67
3.3.6. Experiment 15: Acclimatization of rooted axillary bud cultures of	
cinnamon	67
4. RESULTS AND DISCUSSION	69
4.1. Experiment 1 – Effect of surface sterilization on establishment of	
in-vitro embryo culture	69
4.2. Experiment 2 – Identification of the type of explant on <i>in-vitro</i>	

establishment of embryo culture	74
4.3. Experiment 3 – Study on growth pattern of <i>in-vitro</i> embryo cultures	76
4.4. Experiment 4 - Effect of antioxidants and absorbents on establishment	
& growth of cinnamon in-vitro seedlings	79
4.4.1. Effect of antioxidants and absorbents on non-browning appearance	
of in-vitro cultured cinnamon plantlets	81
4.4.2. Effect of antioxidants and absorbents on multiple buds formation	82
4.4.3. Effect of antioxidants and absorbents on stem elongation	83
4.4.4. Effect of antioxidants and absorbents on leaf formation	84
4.4.5. Cumulative effect of different antioxidants and absorbents	
on different growth parameters of in-vitro cinnamon plantlets	85
4.5. Experiment 5 – Effect of Gibberalic Acid (GA ₃) on growth performances	
of embryo culture	86
4.5.1. Effect of GA ₃ on multiple shoots proliferation ability	88
4.5.2. Effect of GA ₃ on stem elongation	89
4.5.3. Effect of GA ₃ on leaf formation ability	91
4.5.4. Effect of GA ₃ on tap root elongation	92
4.5.5. Cumulative effect of GA ₃ on different growth parameters of the plantlets	93
4.6. Experiment 6: Effect of yeast extract and source of mother plant	
on cinnamon embryo culture	94
4.6.1. Effect of yeast extracts and source of mother plant on browning	94
4.6.2. Effect of yeast extract and source of mother plant on proliferation	95
4.6.3. Effect of yeast extract and source of mother plant on stem elongation	96
4.6.4. Effect of yeast extracts and source of mother plant on leaf	
formation ability	98
4.6.5. Cumulative effect of yeast extract and source of mother plant on	
different growth parameters of in-vitro seedlings	99
4.7. Experiment 7: Effect of activated charcoal on tap root elongation of	
in-vitro cultured embryo explants	100
4.8. Experiment 8: Effect of α-Napthalene Acetic Acid (NAA)	
and 6-Benzylaminopurine (BAP) on adventitious root induction / elongation	
of in-vitro micro shoots	101
4.8.1. Combination effect of NAA and BAP on elongation of initiated	
adventitious roots of in vitra micro shoots	102

4.8.2. Effect of NAA on mean root length of in-vitro micro shoots of cinnamon 1	104
4.8.3. Effect of BAP on root elongation of <i>in-vitro</i> micro shoots of cinnamon	105
4.9. Experiment 9 – Acclimatization of cinnamon plantlets	106
4.10. Experiment 10 - Selection of surface sterilent exposure time for	
establishment of axillary buds collected from green-house grown seedlings 1	109
4.11. Experiment 11 – Effect of antioxidants and absorbents on <i>in-vitro</i>	
establishment of axillary bud cultures of cinnamon	113
4.12. Experiment 12: Selection of appropriate basal medium for establishment of	
axillary buds collected from green-house grown seedlings	116
4.13. Experiment 13: Multiple bud formation on axillary buds collected	
from green-house grown plants	119
4.14. Experiment 14: Adventitious roots induction on axillary bud	
cultures of cinnamon 1	122
4.15. Experiment 15: Acclimatization of rooted axillary bud cultures of	
cinnamon 1	124
5. CONCLUSIONS 1	127
6. REFERENCES	129
7. APPENDICES	

LIST OF FIGURES

Figure 4.1. Effect of concentration and exposure time of surface	
sterilent (Clorox [®]) on browning	69
Figure 4.2. Change of browning level of isolated embryos against the	
concentrations of Clorox® and its exposure times	71
Figure 4.3. Effect of different levels of Clorox® and its exposure times on % of	
non-contaminant isolated embryos	72
Figure 4.4. Effect of different types of explants on culture initiation	74
Figure 4.5. Stem elongation ability of cinnamon embryo culture	76
Figure 4.6. Leaf formation ability of <i>in-vitro</i> seedling	77
Figure 4.7. Multiple shoots formation ability of cinnamon embryo culture	77
Figure 4.8. Callus formation ability on the base of the <i>in-vitro</i> seedlings	78
Figure 4.9. Changing appearance in color of the main stem of cinnamon seedlings	s 79
Figure 4.10. Browning level of isolated embryos against the antioxidants	
and absorbents	81
Figure 4.11. Effect of different antioxidants and absorbents on stem elongation of	?
embryo cultures of cinnamon	83
Figure 4.12. Effect of different antioxidants and absorbents on leaf formation of	
embryo cultures of cinnamon	84
Figure 4.13. Cumulative effect of antioxidants and absorbents on different growth	1
parameters of embryo cultures of cinnamon	85
Figure 4.14. Effect of GA ₃ on shoot initiation	88
Figure 4.15. Effect of GA ₃ on stem elongation	90
Figure 4.16. Effect of GA ₃ on leaf formation	91
Figure 4.17. Effect of GA_3 on tap root elongation	92
Figure 4.18. Cumulative effect of different concentrations of GA ₃ on	
different growth parameters	93
Figure 4.19. Change of browning level of isolated embryos against levels of	
yeast extract and source of mother plant	94
Figure 4.20. Effect of yeast extract level on stem elongation depending on	
the source of mother plant	96
Figure 4.21. Effect of different sources of mother plants on leaf initiation	
of <i>in-vitro</i> raised seedlings	98

Figure 4.22. Effect of activated charcoal on elongation of tap root	100
Figure 4.23. Combination effect of NAA and BAP on elongation of adventitious	
roots of in-vitro micro shoots	102
Figure 4.24. Adventitious root elongation ability of in-vitro micro shoots	
at different NAA and BAP levels	104
Figure 4.25. Survival rate of <i>in-vitro</i> rooted micro cuttings in different potting	
media	107
Figure 4.26. Effect of different exposure times of 0.1 % HgCl ₂ on percentage of	
bacterial and fungal contamination	110
Figure 4.27. Effect of 0.1 % HgCl ₂ for selecting optimum exposure time	
with minimizing contamination and browning effect	111
Figure 4.28. Browning level of axillary buds against the antioxidants and	
absorbents	114
Figure 4.29. Changing pattern of green appearance of the axillary buds due	
to different antioxidants and absorbents	115
Figure 4.30. Effect of basal media on shoot initiation	117
Figure 4.31. Changing of appearance on axillary bud culture	118
Figure 4.32. Multiple bud formation on axillary buds	120
Figure 4.33. Duration for multiple bud formation of axillary buds	121
Figure 4.34. Elongation of adventitious roots of axillary bud cultures	123
Figure 4.35. Percentage of survival of <i>in-vitro</i> rooted axillary bud cultures in	
different potting media	125

LIST OF TABLES

Table 2.1. Some Cinnamomum spps which are closely related to true cinnamon	6
Table 2.2. Some true cinnamon types in Sri Lanka	8
Table 2.3. Success of rooting and survival in nursery	41
Table 3.1. Experimental layout for surface sterilization of embryo explants	55
Table 3.2. Criteria for scores given according to the appearance of the explants	56
Table 3.3. Criteria for scores given according to the appearance of the explants	59
Table 3.4. Experimental layout for <i>in-vitro</i> root initiation / elongation on cinname	on
micro shoots	62
Table 3.5. Experimental layout for multiple bud formation on axillary buds	66
Table 4.1. Effect of different antioxidants and absorbents on growth parameters	
of in-vitro cinnamon seedlings	80
Table 4.2. Effect of different concentrations of GA ₃ on growth parameters of	
in-vitro cinnamon seedlings	87

LIST OF PLATES

Plate 1: Cinnamomum zeylanicum (01) and Cinnamomum cassia (02)	7
Plate 2: True cinnamon tree with flowers (01) and a flower of cinnamon (02)	9
Plate 3: Sticks of Indonesian cinnamon (01) and true cinnamon (02)	11
Plate 4: Browning of isolated embryos	70
Plate 5: Bacterial contamination of the isolated embryo	72
Plate 6: In-vitro cinnamon seedlings raised from isolated embryos	73
Plate 7: Use of embryonic axis with half of cotyledon for <i>in-vitro</i> establishment	75
Plate 8: Enhancement of stem elongation and leaf initiation of in-vitro	
embryo cultures	86
Plate 9: Elongated adventitious root on in-vitro raised micro shoot (01) and rooted	Ĺ
micro shoot prepared for data collection (02)	106
Plate 10: Acclimatization of cinnamon plantlets in coir dust alone potting	
medium	107
Plate 11: In-vitro establishment of axillary bud cultures of cinnamon	113
Plate 12: A successfully established axillary bud culture of cinnamon	116
Plate 13: Multiple bud formation on axillary bud cultures	122
Plate 14: Adventitious root induction of axillary bud cultures	124
Plate 15: Ex-vitro rooting of micro shoots derived from axillary bud cultures of	
cinnamon	126