University of Ruhuna

Bachelor of Science General Degree Level I (Semester I) Examination - July 2016

Subject: Mathematics

Course Unit: MAT112 δ (Differential Equations)

Time: One (01) Hour

Answer 02 Questions

1. (a) When V is a function of x, use y = xV to solve the differential equation

$$\frac{dy}{dx} = \frac{y^2}{xy - x^2}.$$

(b) Solve the differential equation

$$\frac{dy}{dx} = \frac{x\cos x - 2xy}{x^2}$$

by showing that the equation is a perfect differential equation.

(c) If y(0) = 3 then find the solution of the differential equation

$$\frac{dy}{dx} + 2xy = 4x.$$

2. Solve the following differential equations:

$$\frac{dy}{dx} = \frac{x+2y+3}{1-x-2y}.$$

$$\frac{dy}{dx} = \frac{x+2y+3}{2x+y+3}.$$

- 3. a) Let $D = \frac{d}{dx}$, and a_1 , a_2 , a_3 and α be constants.
 - (i) Show that $(a_1D^2 + a_2D + a_3)\{e^{\alpha x}V(x)\} = e^{\alpha x}(a_1(D+\alpha)^2 + a_2(D+\alpha) + a_3)V(x)$
 - (ii) If $F(D^2) = \sum_{r=0}^{n} a_r(D^2)^r$, where n = 0, 1, 2, 3, ..., then show that

$$F(D^2)\sin(\alpha x) = F(-\alpha^2)\sin(\alpha x).$$

b) Solve the differentail equation

$$(D^2 + 9)y = x + \sin(2x).$$