UNIVERSITY OF RUHUNA

BACHELOR OF SCIENCE GENERAL DEGREE LEVEL II (SEMESTER II) EXAMINATIONS-NOVEMBER/DECEMBER-2016

SUBJECT: Chemistry

COURSE UNIT: CHE 2214

TIME: Three (03) hours

Answer six (06) questions only by selecting two (02) from each of the sections, A, B, and C

Velocity of light, $c = 3x \cdot 10^8 \text{ m s}^{-1}$

Avogadro's number, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

Universal gas constant, $R = 8.314 \text{ J} \cdot \text{K}^{-1} \text{mol}^{-1}$

0.0821 dm³ atm K⁻¹ mol⁻¹

Boltzmann constant, $k = 1.381 \times 10^{-23} \text{ J} \cdot \text{K}^{-1}$

Faraday constant, $F = 9.6485 \times 10^4 \text{ C mol}^{-1}$

Electron charge, $e = 1.602 \times 10^{-19} \text{ C}$

Planck's constant, $h = 6.626 \times 10^{-34} \text{ J} \cdot \text{s}$

Proton mass, $m_p = 1.673 \times 10^{-27} \text{ kg}$

Electron mass, m_e = $9.10 \times 10^{-31} \text{ kg}$

Atomic mass unit (amu) = $1.6606 \times 10^{-27} \text{ kg}$

Standard pressure = $1.01325 \times 10^5 \text{ Pa}$

Important conversation factors

1 atm = 760 mmHg = 1.01325 bar = 101325 Pa

2.303 (RT/F) = 59.15 mV at 298.15 K

 $1 \text{ eV} = 1.6022 \text{ x } 10^{-19} \text{ J}$

SECTION - A

01. Answer all parts

(a) (i) State the eighteen electron rule.

[05 marks]

- (ii) Show whether the following organometallic compounds agree or do not agree with the eighteen electron rule.
 - (I) $Cr(CO)_3(\eta^6 C_6H_6)$
 - (II) $(\eta^5 C_5 H_5)_2 Ti(CO)_2$
 - (III) $(\eta^5 C_5 H_5) lr(C H_3)_4$

[05x4 marks]

(iii) State the oxidation state of the metal in each of the above organometallic compounds.

[05 marks]

- (b) (i) Identify each of the organometallic compounds given below as ionic, covalent or electron deficient.
 - (I) $(CH_3)_2Hg$
 - (II) $Al_2(CH_3)_6$
 - (III) (CH₃)₄Si
 - (IV) $K(\eta^5-C_5H_5)$
 - (V) $[Be(CH_3)_2]_n$

[03x5 marks]

- (ii) For each of the following pairs, identify the ions/molecules having the higher value for the given parameter/property. Give reasons for your answers.
 - (I) CO bond length $[Fe(CO)_4]^{2-}$, $[Cu(CO)_4]^{+}$
 - (II) π -acceptor property PF₃, P(C₂H₅)₃
 - (III) Stability $[Mn(CO)_6]$, $[Mn(CO)_6]^+$
 - (IV) v_{CO} stretching frequency in the IR spectrum Na₂Fe(CO)₄, Fe(CO)₅ [20 marks]

- (c) (i) Predict the possible product(s) of the following reactions.
 - (I) $CH_3Cl + Li \rightarrow$
 - (II) NaMn(CO)₅ + CH₃Cl \rightarrow
 - (III) $Mn_2(CO)_{10} + Na/Hg \rightarrow$

[05x3 marks]

(ii) The IR spectrum of the diamagnetic compound Mn₂(CO)₁₀ is given below.

By using the above data and the Valence Bond Theory, predict the geometry of $Mn_2(CO)_{10}$ and sketch its structure.

[20 marks]

02. Answer all parts

- (a) Briefly explain the chemistry pertaining to the following statements.
 - (i) CrO_4^{2-} ion is used in the titrimetric determination of Ag^+ ions with Cl^- ions.
 - (ii) K₂Cr₂O₇is used in ethanol detectors.

[20 marks]

- (b) Titanium is a light, strong and commercially important transition metal.
 - (i) Giving appropriate balanced chemical equations and necessary conditions describe how you would extract pure titanium from naturally occurring rutile.

[20 marks]

(ii) State **two** major disadvantages of the above extraction process.

[10 marks]

(iii) Explain why C or CO cannot be used as the reducing agent in the above extraction process.

[05 marks]

- (c) M is an early transition element with varying oxidation states. M forms an orange coloured catalytically important metal oxide X. When X is reduced with calcium the pure metal M is obtained. The pure metal M reacts with Cl₂ gas to give a toxic redbrown liquid MCl₄. Reaction between NaC₅H₅ and MCl₄ in THF followed by extraction into chloroform gives an anticancer drug M(C₅H₅)₂Cl₂ (R). When the oxide X is reduced with SO₂, the dark blue amphoteric oxide MO₂ and SO₃ gas are formed. MO₂ reacts with dilute HCl to form MOCl₂.
 - (i) Identify X, M.

[05 marks]

(ii) Draw the structures of MCl₄, R, and MOCl₂

[10 marks]

(iii)Calculate the spin only magnetic moment of [M(H₂O)₆] ²⁺.

[15 marks]

(d) Briefly describe the coordination environment at the oxygen binding site of the hemoglobin molecule and describe the structural changes that occur during the oxygen binding process.

[15 marks]

03. Answer all parts.

- (a) Liquid HF and liquid N_2O_4 are two non-aqueous solvents used in research and industry.
 - (i) Write balanced chemical equations for the self-ionization of liquid HF and liquid N_2O_4 .
 - (ii) Identify the acidic and basic species present in each ionized solvent.
 - (iii)Draw the structure of the basic species formed by the self-ionization of liquid HF.
 - (iv) In addition to the ionized basic product given in part (iii), H₃F₄ can be formed as an ionic product. Draw an acceptable structure for this ion.
 - (v) Giving relevant chemical equations, explain why liquid HF cannot be stored in glass bottles.
 - (vi) What product(s) would you expect when Na is added to liquidN2O4?
 - (vii) Predict the products and write balanced chemical equations for the following reactions.
 - (I) Sn + ClNO (in liquid N₂O₄)
 - (II) $Cu + N_2O_4$ (in the presence of CH_3CN)
 - (III) HF + CH₃COOH

[50 marks]

- (b) Predict the product(s) and write balanced chemical equations for the following reactions.
 - (i) $CS_2 + S_2Cl_2 \longrightarrow$
 - (ii) $PCI_5 + NO_2 \longrightarrow$
 - (iii) $Al_4C_3 + H_2O \longrightarrow$
 - (iv) $CFCl_3 + HF \longrightarrow$
 - (v) $P_4O_{10} + CH_2(CO_2H)_2$ ----
 - (vi) $CH_3SiCl_3 + CH_3MgCl$ \longrightarrow

[30 marks]

- (c) Draw the structures of the following and indicate the oxidation state(s) of P, Si and S.
 - (i) Trimetaphosphoric acid
 - (ii) Inosilicate (double chain)
 - (iii) γ-SO₃
 - (iv) P₄O₁₀

[20 marks]

SECTION-B

- 04. Answer all parts.
 - (a) Arabinitol is used in many medical applications and it can be synthesized by monosaccharide arabinose.

Arabinose

- (i) Identify whether the above given arabinose is a D/L sugar, an aldose/ketose, based on the number of carbons.
- (ii) Propose a synthetic method that can be used to synthesize arabinose from glucose.
- (iii) Write down the structure of arabinitol and reaction conditions required for the conversion of arabinose to arabinitol.

[25 marks]

(b) In the reactions given below, deduce the structures of A to F, under the given conditions.

(i)
$$CH_2OH$$
 $2 HIO_4$ $2 A + B$ CH_2OH

(ii)
$$C \xrightarrow{3 \text{ HIO}_4} {}^{3} \text{ H} \xrightarrow{O} \text{OH} + \text{H} \xrightarrow{H}$$

(iii) CHO
H—OH—
$$\frac{HCN}{KCN}$$
 D $\frac{H_2}{Pd/BaSO_4}$ E $\frac{H_3O^+}{F}$ [30 marks]

- (c) Starch is a polymer of glucose and present in plants as the main energy storage component.
 - (i) Briefly explain the structure of starch.
 - (ii) How can starch be identified in the laboratory?

[15 marks]

(d) Giving necessary reagents, reaction conditions and intermediates formed, show how you would carry out the following conversions.

(iii)

05. Answer all parts.

[30 marks]

- (a) The properties of common α -amino acids differ with their side chains.
 - (i) Classify the following amino acids into groups of non-polar, polar, acidic or basic. Met, Cys, Lys, Glu, Asn

[05 marks]

(ii) Draw the chemical structures of two of the above amino acids.

[10 marks]

(b) (i) Define the term isoelectric point of amino acids.

[05 marks]

(ii) In gel electrophoresis what direction (none, toward the cathode, toward the anode) does the amino acid Lys, move when placed in an electric field at the following pH values: 1, 3, 5, 7, 9, and 12? (Isoelectric point of Lys is 9.8). Explain briefly your answer.

[10 marks]

(c) Answer the following related to protein.

- (i) What is meant by primary structure of a peptide/protein?
- (ii) What is an α-helix?
- (iii) What is a β -sheet?

[20 marks]

(d) (i) Write a short account on enzymatic cleavage of peptides/proteins.

[15 marks]

- (ii) A nonapeptide X with the amino composition of (Lys)₂, (Gly)₂, (Phe)₂, His, Leu, Met, was treated as described below. Giving reasons derive the amino acid sequence of the peptide X by using the given information.
 - (I) with 1-fluoro-2,4-dinitrobenzene (FDNB) and then hydrolyzed; 2,4-DNP-histidine was identified by HPLC as the product.
 - (II) with CNBr, an octapeptide and free glycine were recovered.

- (III) with trypsin gave a pentapeptide, a tripeptide, and free Lys. 2,4-DNP-histidine was recovered from the pentapeptide, and 2,4-DNP-phenylalanine was recovered from the tripeptide when treated with FDNB.
- (IV) with the enzyme pepsin produced a dipeptide, a tripeptide, and a tetrapeptide. The amino acid composition of the tetrapeptide is (Lys)₂, Phe, and Gly.

[35 marks]

06. Answer all parts.

(a) Briefly explain what enzyme cofactors are.

[10 marks]

(b) What are the <u>two</u> models used to explain enzyme-substrate binding? Briefly describe one of these models using a suitable diagram.

[14 marks]

(c) Graphically show the relationship between substrate concentration and the reaction velocity of an enzymetic reaction. Indicate K_m and V_{max} on the graph.

[10 marks]

(d) Explain competitive and non-competitive inhibition of enzyme.

[10 marks]

(e) Using a Lineweaver Burk plot show how would the relationship between substrate concentration and the reaction velocity changes in the presence of a competitive and a non-competitive inhibitor.

[22 marks]

- (f) (i) Give trivial names of the following two structures.
 - (ii) Show how base- pairing occurs between these two in a DNA double helix.

[15 marks]

(g) Write down the base sequence of the DNA template leading to replication of a strand of RNA with the following sequence: 5'-AUCGCGUUAA-3'.

[10 marks]

(h) Draw the structure of any RNA nucleotide.

[09 marks)

SECTION-C

07. Answer all parts

Using the given data, calculate ΔS^0_{rxn} for the following two reactions. In each case, give reasons for the sign of ΔS^0_{rxn} .

(i)
$$3 \text{ NO}_2(g) + \text{H}_2\text{O}(l)$$
 \longrightarrow $2 \text{ HNO}_3(aq) + \text{NO}(g)$

(ii)
$$Cr_2O_3(s) + 3 CO(g)$$
 \rightarrow $2 Cr(s) + 3 CO_2(g)$

Substance	H ₂ O (<i>l</i>)	NO ₂ (g)	HNO ₃ (aq)	NO (g)	Cr ₂ O ₃ (s)	Cr (s)	CO (g)	CO ₂
S ⁰ J K ⁻¹ mol ⁻¹	70.0	240.1	146.0	210.8	81.2	23.8	197.7	213.8

[20 marks]

- (b) (i) State the third law of thermodynamics.
 - (ii) Using the Boltzmann formula show how the molecular interpretation of entropy, justifies the third law.

[20 marks]

- (c) Write expressions to relate Gibbs free energy change of a reaction at temperature T under standard condition to:
 - (i) its enthalpy and entropy changes
 - (ii) its equilibrium constant, K
 - (iii) Combining the above two expressions obtain an equation to show that *ln* K versus 1/T varies linearly.
 - (iv) An equilibrium reaction was studied at various temperatures. The data was plotted according to the van't Hoffequation. The equation of the line that fits to data was found to be $y = 1.0 \times 10^4 \frac{1}{T} + 11.4$.

What is the standard entropy and the enthalpy change forthe reaction?

[40 marks]

(d) A BaSO₄ slurry is usually ingested before the gastrointestinal tract is X-rayed. Effect of toxic Ba²⁺ ion is insignificant due to low solubility of BaSO₄. If ΔG° for the dissolution process of BaSO₄ in water at body temperature (37 °C) is 59.1 kJ mol what is the Ba²⁺ ion concentration in the intestinal tract? Assume that the only source of SO₄²⁻ is the ingested slurry and neglect the effects of other ions.

[20 marks]

08. Answer both parts

(a) (i) Identify the terms in the following equation..

$$\log \gamma \pm = -\frac{A|z_+ z_-|I^{1/2}}{1 + BI^{1/2}}$$

[15 marks]

(ii) When do you use the Extended Debye Huckel Limiting Law? and state the reason/s for using Debye Huckel/Extended Debye Huckel Limiting Laws.

[25 marks]

(b) Consider the following cell at 298 K.

$$Zn(s)|ZnCl_2 (aq) (0.005 \ mol \ dm^{-3})|Hg_2Cl_2 (s)|Hg(l);$$

$$E^0 = 1.0304 \text{ V}$$

At 298 K
$$\left(\frac{\partial E}{\partial T}\right)_p = -4.52 \times 10^{-4} V K^{-1}$$

A and B constants of Extended Debye Huckel Limiting Law are 0.509 and 1.25 respectively

(i) Write down a short description of the above cell.

[10 marks]

(ii) Obtain the cell reaction.

[05 marks]

(iii) Calculate ΔG , ΔS , and ΔH for the cell reaction under the given experimental conditions.

[45 marks]

09. Answer all parts.

(a) Qualitatively explain what you understand by the *Black Body Radiation*. German physicist Max Planck introduced the phenomenon of *Quantization* in order to explain this observation. Briefly explain what is meant by *Quantization*.

[15 marks]

(b) Comment on the following statement:

"The ejection of electrons from a metallic surface, when irradiated with light is known as the Photoelectric Effect. However there is a threshold frequency characteristic of the metallic surface, below which no electrons are ejected."

[15 marks]

(c) The work function of a certain metal is 4.50 eV and this surface is irradiated with a monochromatic light beam of 190 nm wavelength. Calculate the threshold frequency and kinetic energy of the photoelectrons emitted from this surface.

[20 marks]

(d) A particle of mass **m** is confined to a one dimensional box of length **a**. The potential energy of the system is defined as:

$$V(x) = \begin{cases} 0 & 0 \le x \le a \\ \infty & 0 > x \text{ and } x > a \end{cases}$$

(i) Write the Schrodinger equation for this system showing separate equations for the inside and outside of the box and hence explain why the particle is always confined to the box

[15 marks]

(ii) Assume a solution (inside the box) of the form

$$\psi(x) = A \sin(\alpha x) + B \cos(\alpha x)$$

and prove by substitution that this is a satisfactory solution to the Schrodinger equation in (i) for the particle inside the box. Using boundary conditions and then normalizing, show that

$$\Psi_n(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi x}{a}\right)$$
 and $E_n = \frac{n^2 h^2}{8ma^2}$

where $n = 1, 2, 3, \dots$

[The general form of the Schrodinger equation is given by

$$\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} + \frac{8\pi^2 m}{h^2} (E - V) \Psi = 0$$

Note: $\int \cos(\alpha x) dx = \frac{1}{\alpha} \sin(\alpha x)$; $\cos 2\beta = 1 - 2 \sin^2 \beta$

[35 marks]