

University of Ruhuna

Bachelor of Science Special Degree Level II (Semester II) Examination

December 2016

Subject: Mathematics

Course Unit: MSP4224 (Introduction to Stochastic Analysis with Applications)

Time: Three(03) Hours

Answer ALL Questions. Calculators will be provided.

- 1. a) Consider the sample space $\Omega = \{1, 2, 3, 4, 5, 6\}$. Let $A = \{1, 2, 3\}$ and $B = \{2, 4, 6\}$ be two events. By taking all possible unions, intersections and complements, write down the σ -field \mathcal{F} generated by A and B.
 - b) Consider the sample space $\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4\}$. Define a probability measure on $(\Omega, 2^{\Omega})$ by

$$P(\omega_1) = \frac{1}{3}, \ P(\omega_2) = \frac{1}{6}, \ P(\omega_3) = \frac{1}{3}, \ P(\omega_4) = \frac{1}{6},$$

and a random variable X by

$$X(\omega) = I_{\{\omega_1, \omega_2\}}(\omega) = \begin{cases} 1 & \text{if } \omega \in \{\omega_1, \omega_2\} \\ 0 & \text{otherwise.} \end{cases}$$

Now define the σ -fields $\mathcal{F} = \sigma\{\{\omega_1, \omega_2\}, \{\omega_3, \omega_4\}\}\$ and $\mathcal{G} = \sigma\{\{\omega_1, \omega_4\}, \{\omega_2, \omega_3\}\}\$.

- (i) Compute the expectation of X, i.e. E[X] and the conditional expectation $E[X|\mathcal{F}]$.
- (ii) Compute $E[X|\mathcal{G}]$. Is X independent of \mathcal{G} ?
- c) Define the one dimensional standard Brownian motion $(B_t, t \ge 0)$.

Consider the stochastic process $X_t = B_t^2 - t$, $t \ge 0$. We associate with X_t an increasing stream of information about the structure of the process which is represented by the σ -fields $\mathcal{F}_s = \sigma\{B_x, x \le s\}$.

By considering the two cases $s \ge t$ and s < t separately and stating clearly any results you may use, show that

$$E[X_t|\mathcal{F}_s] = X_{\min(s,t)}.$$

- 2. a) A Poisson process with intensity $\lambda = 1$ is a stochastic process $\{N_t, t \geq 0\}$, with initial value $N_0 = 0$ satisfying
 - if $0 = t_0 < t_1 < t_2 < \ldots < t_{n-1} < t_n$, then $N_{t_k} N_{t_{k-1}}$, $1 \le k \le n$ are independent. This implies that if $\mathcal{F}_t = \sigma\{N_t, t \ge 0\}$ is the filtration generated by N, then $N_t N_s$ is independent of \mathcal{F}_s .
 - $N_t N_s$ is Poisson distributed with parameter t s. The parameter is same as the expected value and variance.

Define the process M by $M_t = N_t - t$. This process is then a martingale with respect to the filtration generated by N. Now consider the process $M_t^2 - t$. Show that

- (i) $E[|M_t^2 t|] < \infty$.
- (ii) the process M_t^2-t is a martingale with respect to the filtration generated by N, i.e. $E[M_t^2-t|\mathcal{F}_s]=M_s^2-s$.

b) State the isometry property for the Ito stochastic integral. Consider the processes defined by

$$X_t = \int_0^t \cos(u) dB_u \text{ and } Y_t = \int_0^t \sin(u) dB_u,$$

where B denotes one dimensional Brownian motion.

- (i) Prove the identity $E[X_t^2 + Y_t^2] = t$, where E denotes expectation.
- (ii) Use the simple Ito formula to prove that $M_t = X_t^2 + Y_t^2 t$ is a martingale, i.e. dM_t does not have a dt term.
- (iii) Find all the values of t such that the covariance of the processes X_t and Y_t is zero, i.e. $Cov(X_t, Y_t) = 0$.
- 3. Define a linear Ito stochastic differential equation.

Apply the simple Ito formula to show that the linear Ito stochastic differential equation

$$X_t = X_0 + (\sigma^2 - \lambda) \int_0^t X_s \, ds - \sigma \int_0^t X_s \, dB_s, \ t \in [0, T],$$

where λ and σ are positive constants and $(B_t, t \geq 0)$ is the one dimensional standard Brownian motion, has a solution of the form

$$X_t = X_0 \exp\{(\frac{1}{2}\sigma^2 - \lambda)t - \sigma B_t\}.$$

(Hint: You may apply the method of separation of variables appropriately.)

Consider the stochastic differential equation (SDE)

$$dZ_t = (\lambda Z_t - Z_t^2) dt + \sigma Z_t dB_t, \ Z_0 = z_0,$$

where λ and σ are positive constants and $(B_t, t \geq 0)$ is the standard Brownian motion.

(i) Use $Y_t = \frac{1}{Z_t}$ in the simple Ito formula to show that the above SDE can be written in the linear form

$$dY_t = (1 + (\sigma^2 - \lambda)Y_t) dt - \sigma Y_t dB_t.$$

(ii) Suppose the linear SDE in part (i) has a solution of the product form $Y_t = U_t V_t$, where

$$dU_t = (\sigma^2 - \lambda)U_t dt - \sigma U_t dB_t, \ U_0 = 1,$$

and

$$dV_t = a_t dt + b_t dB_t, \ V_0 = Y_0.$$

Here a_t and b_t are adapted processes which can be found by coefficient matching.

- (α) Use the Ito product formula to find dY_t .
- (β) Identify a_t and b_t .
- (γ) Obtain U_t and V_t .
- (iii) Show that

$$Z_{t} = \frac{z_{0} \exp\{(\lambda - \frac{1}{2}\sigma^{2})t + \sigma B_{t}\}}{1 + z_{0} \int_{0}^{t} \exp\{(\lambda - \frac{1}{2}\sigma^{2})s + \sigma B_{s}\} ds}.$$

a) (i) Let X_t have stochastic differential $dX_t = B_t dt + t dB_t$, $X_0 = 0$. It is obvious that $X_t = tB_t$ satisfies this equation.

Let Y_t have stochastic differential

$$dY_t = \frac{1}{2}Y_t dt + Y_t dB_t, Y_0 = 1.$$

Using the simple Ito formula, show that $Y_t = e^{B_t}$ satisfies this equation. Now use the Ito product formula to find $d(X_tY_t)$.

(ii) Compute the stochastic differential of

$$\sin(B_t^2) \int_0^t e^s \, dB_s$$

appropriately using the simple Ito formula and Ito product formula. Here, B is one dimensional standard Brownian motion.

b) Let S be the price of a particular asset at time t. After a (short) time interval dt, the asset price changes by dS, to S + dS. Rather than measuring the absolute change dS, we measure the return on the asset which is defined to be $\frac{dS}{S}$ and is given by

$$\frac{dS}{S} = \mu \, dt + \sigma \, dX,$$

where μ and σ are called *drift* and *volatility*, respectively. The quantity dX is a random variable having a normal distribution with mean zero and variance dt.

- (i) Assuming $\sigma = 0$, show that the asset price is given by $S = S_0 e^{\mu t}$, where S_0 is the asset price at time t = 0.
- (ii) The price S of a particular share today is LKR 100. Construct a time series for the share price (i.e. find S_1, S_2, S_3, S_4, S_5 taking dX as -0.05, 0.12, 0.08, 0.16, 0.06, respectively) over five intervals if $\mu = 0.8, \sigma = 0.6, dt = \frac{1}{300}$.

Also demonstrate the time series graphically.

(Hint: You may use values of S_1, S_2, S_3, S_4 and S_5 in the graph approximately correct to one decimal place.)