ABSTRACT

10

Hydrogen gas evolution was observed for the first time from a photoelectrochemical cell using a n-type Cu₂O photoelectrode under visible light irradiation. Three-electrode configuration was used in the photoelectrochemical cell to observe H₂ evolution. AgCl/Ag calomel electrode and a platinum plate were used as the reference and counter electrodes, respectively. Fe^{2+}/Fe^{3+} redox couple was used as the electrolyte. H₂ evolution was visible on the platinum electrode in the photoelectrochemical cell.

p-Cu₂O films were prepared on copper plates by heating in the air at $850C^{\circ}$ for 3min followed by rapid quenching in a 10^{-3} M aqueous CuSO₄ solution. Continuous immersion of this plate in the CuSO₄ solution after quenching, facilitates to form p-Cu₂O crystallites on the surface of thermally grown p-Cu₂O films.

ii

Different sizes of crystallites were obtained controlling the length immersion time, in the CuSO₄ solution. These films were characterized by XRD, SEM, absorption spectra, photocurrent action spectra, V-I characteristic curves and applying to p-CuSCN sensitized photoelectrochemical cells from this study.

٤