

Subject: Mathematics

Course Unit: MAT111β / MAM1113 (Vector Analysis)

Time: Two (02) Hours

Answer Four (04) questions only

1. Let P be any point on a straight line ℓ in the three-dimensional space with position vector $\underline{r} = x\underline{i} + y\underline{j} + z\underline{k}$ relative to the origin O. Consider any two fixed points A and B on this straight line with position vectors \underline{a} and \underline{b} respectively relative to the origin O.

Show that the vector equation of the straight line ℓ can be written as

$$\underline{r} = \underline{a} + \lambda \underline{c}$$
,

where λ is a parameter and $\underline{c} = \underline{b} - \underline{a}$.

Write down the coordinates (x, y, z) of any point on the straight line ℓ if $\underline{a} = (a_1, a_2, a_3)$ and $\underline{c} = (c_1, c_2, c_3)$.

Consider the following two straight lines ℓ_1 and ℓ_2 in the three-dimensional space:

 ℓ_1 : passes through the point (0,2,-1) with direction vector (1,1,2)

 ℓ_2 : passes through the point (1,0,-1) with direction vector (1,1,3)

- (a) Write down the vector equations of ℓ_1 and ℓ_2 choosing α and β respectively as parameters. Hence obtain the parametric Cartesian equations of ℓ_1 and ℓ_2 .
- (b) Show that ℓ_1 and ℓ_2 do not intersect each other.
- (c) Let P and Q be the two points on ℓ_1 and ℓ_2 respectively such that PQ is the shortest distance between ℓ_1 and ℓ_2 . Find \overrightarrow{PQ} and show that $|\overrightarrow{PQ}| = \frac{3\sqrt{2}}{2}$ units.
- (d) Find the coordinates of the points P and Q.
- 2. Define, in the usual notation,
 - (i) grad ϕ of a scalar field $\phi(x, y, z)$;
 - (ii) $\operatorname{div} \underline{F}$ and $\operatorname{curl} \underline{F}$ of a vector field $\underline{F}(x, y, z) = F_1 \underline{i} + F_2 \underline{j} + F_3 \underline{k}$.
 - (a) The temperature T at any point in the three-dimensional space is given by T = xy + yz + zx. Find
 - (i) the directional derivative of T at the point (1,2,3);
 - (ii) the component of the directional derivative of part (i) in the direction of the vector (-3,2,4).
 - (b) If a vector field \underline{F} is given by $\underline{F} = (3x^2y z)\underline{i} + (xz^3 + y^4)\underline{j} 2x^3z^2\underline{k}$, find grad div \underline{F} at (2,-1,0).

(c) The motion of a fluid is described by the velocity field

$$\underline{y} = (y\sin z - \sin x)\underline{i} + (x\sin z + 2yz)\underline{j} + (xy\cos z + y^2)\underline{k}.$$

- (i) Show that y is irrotational.
- (ii) Show that the velocity potential $\phi(x, y, z)$ is given by

$$\phi(x, y, z) = xy\sin z + \cos x + y^2 z + C,$$

where C is a constant.

- 3. Let $\underline{r} = x\underline{i} + y\underline{j} + z\underline{k}$ and $r = |\underline{r}|$ be the distance to the point $P \equiv (x, y, z)$ from the origin O. Furthermore, all the notations have usual meanings.
 - (i) Find grad $\frac{1}{r}$
 - (ii) Compute

$$\operatorname{curl}\left(\underline{k} \times \operatorname{grad} \frac{1}{r}\right)$$

and

$$\operatorname{grad}\left(\underline{k}\cdot\operatorname{grad}\frac{1}{r}\right)$$
,

where \underline{k} is the unit vector in the direction O_Z .

(iii) Hence, show that

$$\operatorname{curl}\left(\underline{k} \times \operatorname{grad}\frac{1}{r}\right) + \operatorname{grad}\left(\underline{k} \cdot \operatorname{grad}\frac{1}{r}\right) = \underline{0}.$$

- **4.** (a) Consider the vector field $\underline{F} = (e^x z 2xy)\underline{i} + (1 x^2)\underline{j} + (e^x + z)\underline{k}$.
 - (i) Show that the line integral $\int_C \underline{F} \cdot d\underline{r}$ is independent of path C. Here $\underline{r} = x\underline{i} + y\underline{j} + z\underline{k}$.
 - (ii) Find a scalar function f such that $\underline{F} = \operatorname{grad} f$.
 - (iii) Hence evaluate the line integral $\int_C \underline{F} \cdot d\underline{r}$ along a curve from (0,1,-1) to (2,3,0).
 - (b) State the Green's theorem in the plane.

Verify Green's theorem for

$$\int_C (xy + y^2) \, dx + x^2 \, dy,$$

where C is the closed curve of the region bounded by y = x and $y = x^4$.

5. State the divergence theorem of Gauss.

It is given that the vector field $\underline{F} = 4xz\underline{i} - y^2\underline{j} + yz\underline{k}$ and S is the surface of the cube bounded by the planes x = 0, x = 1, y = 0, y = 1, z = 0 and z = 1. Verify the divergence theorem of Gauss.

6. State the Stokes' theorem.

Verify the Stokes' theorem for the vector field $\underline{F} = z\underline{i} + (2x+z)\underline{j} + x\underline{k}$ taken over the triangular surface S in the plane $\frac{x}{1} + \frac{y}{2} + \frac{z}{3} = 1$ bounded by the planes x = 0, y = 0 and z = 0. Take the boundary of the above triangular surface as the path of the line integral.