TABLE OF CONTENTS

		Page		
Acknowled	gements	i		
Abstract		ii		
Table of con	ntents	v		
List of Figur	res	xiii		
List of Table	es	xvii		
Chapter 1				
Introduction	l	1		
Chapter 2				
Outline of th	ne review of the literature	3		
Chapter 3				
Factors affeo	cting the fluid exchange across the capillary wall -			
- Starling for	rces	4		
3.1	3.1 Sequence of liquid accumulation during			
	formation of pulmonary oedema	4		
3.2	Structure of the alveolar-capillary membrane	5		
	3.2.1 Capillary endothelial cell layer	5		
	3.2.2 The interstitial space	6		
2	3.2.3 The lining of the alveolar wall	6		
3.3	Bronchial Circulation	7		
3.4	Starling forces	8		
3.5	Factors affecting the accumulation of			
	interstitial fluid in the lungs	11		

3.6	Methods of increasing the extravascular fluid	
	content in the lungs of experimental animals	13
Chapter 4		
Review on p	almonary sensory receptors	15
4.1	Slowly adapting receptors (SAR)	15
4.2	Rapidly adapting receptors (RAR)	20
4.3	C fibre afferent receptors	24
Chapter 5		
Experimental	models of chronic heart failure	30
5.1	Models of chronic mitral regurgitation	30
5.2	Models involving aortic valve or aorta	32
5.3	Models involving pulmonary valve or pulmonary artery	33
5.4	High output cardiac failure caused by aorto-caval fistula	33
5.5	Models of heart failure caused by rapid pacing of the heart	34
5.6	Doxorubicin (adriamycin) induced heart failure	34
5.7	Heart failure secondary to myocardial infarction	35
Chapter 6		
Methods of a	ssessing lung water	36
6.1	Direct methods	36
6.2	Indirect methods	37
Chapter 7		
Statement of	the problem	39

Chapter 8

.

Methods		41
8.1	Surgical induction of mitral regurgitation	41
8.2	General surgical preparation	46
8.3	Electrophysiological studies	47
8.4	Measurement of conduction velocity of the axons	48
8.5	Identification of nerve fibres arising from RAR, SAR	
	and C fibre receptors in the lung and the airways	49
8.6	Location of the receptors	50
8.7	In vivo assessment of mitral regurgitation, left ventricular	
	hypertrophy and left ventricular function: Echocardiography	51
8.8	Statistical analysis	52
Chapter 9		
General res	sults	53
Chapter 1	0	
Evidence f	or mitral valve damage	59
10.	1 Visual inspection of the mitral valve apparatus	59
10.	2 Post mortem evidence for left ventricular hypertrophy:	
	increased left ventricular weight	59
10.	3 Evidence for pulmonary venous congestion:	
	elevated left atrial pressure	59
10.	4 In vivo assessment of mitral regurgitation, left ventricular	
	hypertrophy and left ventricular function: echocardiography	63

Chapter 11

Effect of acut	e elevation of left atrial pressure to different degrees on the		
activity of pul	monary vagal afferents	67	
11.1	Acute elevation of left atrial pressure		
11.2	Experimental Protocols	69	
	11.2.1 Prtocol 1a: Effect of acute graded elevation of left		
	atrial pressure on the activity of vagal afferents	69	
	11.2.2 Prtocol 1b: Effect of acute elevation of left atrial		
	pressure above 25 mmHg to induce pulmonary		
	oedema	70	
11.3	Results 11.3.1 Protocol 1a: Effect of acute graded elevation of	71	
	left atrial pressure on the activity of vagal affrents	71	
	11.3.1.1 Intact control rabbits	71	
	11.3.1.1.1 RAR	71	
	11.3.1.1.2 SAR	74	
	11.3.1.2 Sham operated rabbits	77	
	11.3.1.2.1 RAR	77	
	11.3.1.3 Rabbits with chronic pulmonary venous		
a.	congestion for 6 weeks	79	
	11.3.1.3.1 RAR	79	
	11.3.1.4 Rabbits with chronic pulmonary venous		
	congestion for 12 weeks	81	
	11.3.1.4.1 RAR	81	

	11.3.1.4.2 SAR	88
	11.3.1.4.3 Bronchial C fibre afferents	91
	11.3.1.4.4 Pulmonary C fibre afferents	94
	11.3.2 Protocol 1b: Effect acute elevation of left	
	atrial pressure above 25 mmHg on the activity	
	of vagal affrents	97
	11.3.2.1 Rabbits with chronic pulmonary venous	
	congestion for 12 weeks	97
	11.3.2.1.1 RAR	97
	11.3.2.1.2 C fibre afferents	100
Chapter 12		
Protocol 2: E	ffect of obstruction of pulmonary lymphatic drainage on the	
ac	ctivity of pulmonary vagal afferents	103
12.1	Experimental protocols	
	12.1.1 Effect of obstruction of lymph drainage from the	
	lung on C fibre afferent and RAR activity	105
	12.1.2 Effect of combining obstruction of lymph drainage	
	from the lung and plasmapheresis on C fibre	
	afferent and RAR activity	105
12.2	Results	105
	12.2.1 Effect of pulmonary lymphatic obstruction and	
	plasmapheresis on pulmonary vagal afferents	106
	12.2.1.1 Intact control rabbits	106
	12.2.1.1.1 RAR	106

ix

	12.2.1.1.2 Pul	monary C fibre afferents	110
	12.2.1.1.3 Bro	nchial C fibre afferents	115
12.2.1	.2 Rabbits with chronic pu	lmonary venous	
	congestion for 12 week	S	118
	12.2.1.2.1 RA	R	118
Chapter 13			
Protocol 3: m	easurement of the water cor	ntent in the trachea, bronchi,	
lu	ngs and the left ventricle	· · · · · · · · · · · · · · · · · · ·	120
13.1	Results		122
Chapter 14			
Discussion			126
14.1	Selection of the species		127
14.2	Rabbits with chronic mitral	regurgitation	128
14.3	Pulmonary vagal afferents	in pulmonary venous	
	congestion and oedema		130
	14.3.1 RAR		130
	14.3.2 SAR		133
	14.3.3 Bronchial C fibre at	fferents	134
	14.3.4 Pulmonary C fibre a	afferents	135
	14.3.5 Haemodynamic resp	oonse of rabbits during	
	acute elevation of L	AP	137
14.4	Pulmonary vagal afferents	and obstruction of pulmonary	
	lymphatic drainage	1	137

	14.4.1	RAR	137
	14.4.2	Pulmonary C fibre afferents	139
14.5	Altera	tion of Starling forces and extravascular water	
	conten	t in the lungs and the airways	139
	14.5.1	Lung tissues	139
	14.5.2	Major airways	141
Chapter 15			
Conclusions			143
	15.1	RAR	143
	15.2	SAR	143
	15.3	Pulmonary C fibre afferents	143
	15.3	Bronchial C fibre afferents	144
	15.4	Extravascular water content	144
Chapter 16			
Clinical implic	ations		145
References			147
Appendix 1:	Chemic	cals, materials, instruments and equipment	
Appendix 2:	Calcula	ation of extravascular water content in the tissues	
Appendix 3:	Publica	utions	
3.1	Gunaw	vardena S., Bravo E., Kappagoda C. T. (1998). Effe	ect of chronic mitral
	valve d	amage on activity of pulmonary rapidly adapting rec	eptors in the rabbit.
	Journa	l of Physiology 511.1, 79-88.	
3.2	Gunaw	ardena S., Bravo E., Kappagoda C. T. (1999). Rapidl	y adapting receptors
	in a rab	bit model of mitral regurgitation. Journal of Physiol	ogy 521.3, 739-748.
3.3	Symon	s J. D., Gunawardena S., Kappagoda C. T., Dhond M.	R. (2001). Volume

overload left ventricular hypertrophy: effects on coronary microvascular reactivity in rabbits. *Experimental Physiology* 86.6, 725-732.

Gunawardena S., Ravi K., Longhurst J. C., Kaufman M. P., Ma Amy, Bravo Milo,
Kappagoda C. T. (2002). Response of C fibre afferents of the rabbit airways and
lungs to changes in extra-vascular fluid volume. *Respiratory Physiology and Neurobiology* 132, 239-251

List of Figures

No.	•	Title	Page
Fig	. 1	Photograph of the micrscissors used to damage the mitral valve leaflets.	43
Fig	. 2	Schematic diagram showing the procedure of mitral valve damage.	44
Fig.	. 3	Example of a slowly adapting receptor (SAR).	54
Fig.	4	Example of a rapidly adapting receptor (RAR).	54
Fig.	5	Example of a pulmonary C fibre afferent receptor.	55
Fig.	6	Example of a bronchial C fibre afferent.	55
Fig.	7	Pictures of mitral valve apparatus of rabbits. Panel A shows a normal	
		valve leaflets. Panels B, C and D show examples of perforated	
		valve leaflets.	60
Fig.	8	Echocardiograms of rabbits with chronic pulmonary venous	
		congestion showing 1+ (top) and 4+ (bottom) mitral regurgitation.	64
Fig.	9	Activity of RAR in response to acute graded elevation of LAP in	
		control rabbits.	72
Fig.	10	Activity of an RAR in a control rabbit during acute graded elevation	
		of left atrial pressure.	73
Fig.	11	SAR activity in control rabbits in response to acute graded	
		elevation of LAP.	75
Fig.	12	Activity of an SAR in a control rabbit during acute graded	
		elevation of LAP.	76
Fig.	13	Response of RARs to acute graded elevation of LAP in sham	
		operated rabbits.	78
Fig.	14	Activity of RARs in rabbits with chronic pulmonary venous	

.

congestion for 6 weeks.

Fig. 15	Activity of RAR in rabbits with chronic pulmonary venous congestion	
	for 12 weeks.	82
Fig. 16	Response of an RAR to acute graded elevation of LAP in a rabbit	
	with chronic pulmonary venous congestion for 12 weeks.	83
Fig. 17	Activity of RARs in rabbits with chronic pulmonary venous congestion	
	for 12 weeks (a) before and (b) after hypertonic albumin infusion.	8 5
Fig. 18	RAR activity in a rabbit with chronic pulmonary venous congestion	
	for 12 weeks, showing the response to acute graded elevation of LAP	
	(A) before and (B) after an intravenous infusion of hypertonic	
	albumin solution.	8 6
Fig. 19	SAR activity in rabbits with chronic pulmonary venous congestion	
	for 12 weeks.	8 9
Fig. 20	Activity of an SAR in a rabbit with chronic pulmonary venous	
	congestion, during acute graded elevation of LAP.	90
Fig. 21	Activity of bronchial C fibre afferents in rabbits with chronic	
	pulmonary venous congestion for 12 weeks.	92
Fig. 22	Effect of acute graded elevation of LAP on the activity of a	
	bronchial C fibre afferent in a rabbit with chronic pulmonary	
	venous congestion.	93
Fig. 23	Activity of pulmonary C fibre afferents in rabbits with chronic	
	pulmonary venous congestion for 12 weeks.	95
Fig. 24	Response of pulmonary C fibre afferent to acute graded elevation of LAP	
	in a rabbit with chronic pulmonary venous congestion for 12 weeks.	96

80

Fig.	25	Response of RARs in rabbits with chronic pulmonary venous	
		congestion for 12 weeks during acute elevation of LAP by 25 mmHg.	98
Fig. 2	26	Response of an RAR to acute elevation of LAP above 25 mmHg	
		in a rabbit with chronic pulmonary venous congestion for 12 weeks.	99
Fig. 2	27	Activity of C fibre afferents in rabbits with chronic pulmonary venous	
		congestion for 12 weeks during acute elevation of LAP by 25 mmHg.	101
Fig. 2	28	Response of a bronchial C fibre afferent to acute elevation of LAP	
		above 25 mmHg in a rabbit with chronic pulmonary venous	
		congestion for 12 weeks.	102
Fig. 2	29	Diagram of the experimental preparation which was used to obstruct the	pulmonary
	1	ymphatic drainage	104
Fig. 3	0	Activity of RARs in response to lymphatic obstruction and	
		plasmapheresis in intact control rabbits.	108
Fig. 3	1	Example of a RAR activity in response to pulmonary lymphatic	
		obstruction before and after plasmapheresis in a control rabbit.	109
Fig. 3	2	Activity of pulmonary C fibre afferents in control rabbits when	
		pulmonary lymphatic drainage was obstructed.	111
Fig. 3	3.	Activity of pulmonary C fibre afferents in response to pulmonary	
		lymphatic obstruction, before (a) and after (b) plasmapheresis.	113
Fig. 3	4]	Example of a pulmonary C fibre activity in response to pulmonary	
		lymphatic obstruction before and after plasmapheresis in a control rabbit.	114
Fig. 3	5	Activity of bronchial C fibre afferents in response to PLO.	116
. .	_		

Fig. 36 Activity of bronchial C fibre afferents in response to PLO before and after plasmapheresis. 117

.

Fig. 37 RAR activity in rabbits with chronic pulmonary venous congestion for

•

12 weeks in response to	pulmonary	lymphatic obstruction.	119
	pannonarj		

List of Tables

No.	Title	Page
Table 1	Nerve conduction velocities (m s ⁻¹).	56
Table 2.	Stimulus parameters used in different types of vagal pulmonary	
	receptors when measuring the nerve conduction velocity of their axons.	57
Table 3.	Heart rate, mean arterail blood pressure, mean left atrial pressure and	
	peak intratracheal pressure in different groups of rabbits at the	
	beginning of experiments.	58
Table 4	Left ventricular weights and body weights	61
Table 5	Left atrial pressures	62
Table 6	Echocardiographic indices of left ventricular hypertrophy	65
Table 7	Plasma albumin, total protein, plasma osmolality, plasma sodium	
	and haematocrit values before and after the infusion of hypertonic	
	albumin solution.	87
Table 8	Total water content in major airways, lungs and the left ventricle	
	(as a % of wet weight).	123
Table 9	Extravascular water content in major airways, lungs and the left	
	ventricle (as % of wet weight).	124
Table 10	Cardiorespiratory parameters in rabbits whose tissues were	
-	harvested for analysis of water content.	125