University of Ruhuna Bachelor of Science General Degree Level II (semester I) Examination – September 2017

Subject: Mathematics

Course Unit: MAT211ß (Linear Algebra)

Time: Two (02) hours

Answer 04 questions only

- (1) (i) Let $A = [a_{ij}]$ be a non-singular n-square matrix. Prove, in the usual notation, that
 - (a) $A(adj(A)) = |A|I_n$ and
 - (b) $|(adj(A))| = |A|^{n-1}$.
 - (ii) Verify above (a) and (b) of part (i) for the matrix

$$A = \begin{pmatrix} 2 & 0 & 1 \\ 2 & 1 & 0 \\ 0 & 1 & 4 \end{pmatrix}.$$

(iii) Find the inverse of the matrix

$$A = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & -1 \\ 2 & 2 & 3 \end{pmatrix}$$

using elementary row operations.

(iv) Let
$$A = \begin{pmatrix} 3+8i & 3-5i \\ 7-3i & 4-4i \end{pmatrix}$$
.

Write A as the sum of a Hermition and a skew-Hermition matrix.

(2) (a) Define the normal form of a matrix A.

Find the non-singular matrices P and Q such that PAQ is in the normal form where

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ 3 & 6 & 10 \end{bmatrix}.$$

Hence find the rank of A.

(b) Explain what is meant by a diagonalizable matrix.

Let
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 2 & 2 & 1 \end{pmatrix}$$
.

Find a matrix P such that $P^{-1}AP$ is diagonal. Verify your answer.

(3) (a) State the necessary and sufficient conditions that should be satisfied by a non-empty subset W of a vector space V to be a subspace of V.

Define a basis S for a vector space V.

`(i) Find a basis for the vector space V spanned by vectors

$$w_1 = (1,1,1), \ w_2 = (1,2,3), \ w_3 = (3,4,5) \ \text{and} \ w_4 = (2,3,8).$$

- (ii) Show that vectors $v_1 = (0,1,2)$ and $v_2 = (1,2,3)$ are linearly independent and extend the set $\{v_1, v_2\}$ to a basis of \mathbb{R}^3 .
- (b) Let U and W be two subspaces of the vector space \mathbb{R}^3 defined by

$$U = \{(x, y, z) \mid x - 2y = 2z\}$$

$$W = \{(x, y, z) \mid x + 3z = y\}.$$

Find Dim(U), Dim(W), Dim(U+W) and $Dim(U\cap W)$ and verify the dimensional theorem

$$Dim(U) + Dim(W) = Dim(U + W) + Dim(U \cap W).$$

(4) (a) A mapping T: $\mathbb{R}^3 \rightarrow \mathbb{R}^4$, is defined by

$$T(x, y, z) = \{(x + y - z), (z - y), 2x, (2x + 5y - 5z)\}.$$

Show that

- (i) T is linear,
- (ii) $\{ (0,1,1) \}$ is a basis for Ker(T),
- (iii) $\{(1,0,2,2),(1,-1,0,5)\}$ is a basis for Im(T).
- (iv) Verify the rank- nullity theorem.

(b) Define what is meant by an orthonormal set of vectors in an inner product space.

If $\{v_1, v_2...v_n\}$ is a set of linearly independent vectors in an inner product space, then an orthogonal set of vectors $\{w_1, w_2...w_n\}$ can be obtained by using the Gram-Schmidt process as, in the usual notation,

$$w_1 = v_1$$
 and

$$w_k = v_k - \sum_{j=1}^{k-1} \frac{\langle v_k, w_j \rangle}{||W_j||^2} w_j.$$

Find an orthogonal basis for \Re^3 starting with the basis vectors given by $v_1 = (1,0,1), v_2 = (1,1,0)$ and $v_3 = (0,1,1)$.

Hence find an orthonormal basis for \mathbb{R}^3 .

(5) State clearly the condition under which a system of non-homogeneous linear equation

will have

$$A_{m \times n} X_{n \times 1} = D_{m \times 1}$$

- (i) a unique solution
- (ii) no solutions
- (iii) Infinitely many solutions.
- (a) Show that the system of linear equations

$$3x-2y+2z = a$$
$$2x + 4y + 6z = b$$
$$-x + 6y + 4z = c$$

has no solution unless a+c=b.

(b) Determine the values of α and $\,\beta$ for which the system of linear equations

$$2x-4y+z = 2$$
$$x-3y+z = 5$$
$$3x-7y+\alpha z = \beta$$

has

- (i) a unique solution
- (ii) no solutions
- (iii) Infinitely many solutions.

Find the solutions in both cases this linear system is consistent.

(6) (a) Define what is meant by an Eigen value and corresponding Eigen vector of a matrix A_{nxn} .

Consider the matrix

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{pmatrix}.$$

(i) Show that the characteristic equation of the matrix A is given by

$$(\lambda - 1)^2 (\lambda - 7) = 0.$$

- (ii) Find the Eigen value(s) of the matrix A.
- (iii) Find the corresponding Eigen space of the matrix A corresponding to the Eigenvalue $\lambda = 7$.
- (b) State the Cayley-Hamilton Theorem.

Let an 3×3 matrix be

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix}.$$

- (i) Find the Characteristic equation of A.
- (ii) Verify the Cayley-Hamilton Theorem for the matrix A.
- (iii) State whether A is Derogatory or Non-Derogatory giving reasons.
