Contents

Rage No.

	Declaration	iii
	Abstract	· iv
	Acknowledgement	viii
	List of Figure	xiv
	List of Tables	xix
	Chapter 1	
1.1	Introduction	1
1.2	Objectives of the study	3
1.3	Study area	4
1.3.1.	Soils of the Study Area	5
1.3.2.	Agro-climatic types of the study region	6
1.4	Layout of the Thesis	8

Chapter 2

2.	Literature Review	9
2.1	Historical approach of Water Resource Management in Sri Lanka	. 9
2.2	Home Garden Irrigation Schemes	12
2.2.1	Definitions of Home Gardens	14
2.2.2	Research carried out in Home Garden Agriculture	15
2.2.3	Water risk elimination methods in home gardens	16
2.2.4	Rainwater harvesting	16
2.2.5.	Suitable Irrigation Systems for home gardens	17
2.3	Agro-Climatological Definitions	20
2.4	Drought	28
2.4.1	Drought conditions in Sri Lanka.	31
2.5	Summary	31

Chap	oter	3
------	------	---

	Part I -Methodology	
3	Assessment of Irrigation Requirement	34
3.1	Crop Water Requirement (ET _c)	. 34
3.1.1	Reference Evapotranspiration (ET_o)	35
3.1.2	Crop Coefficient	37
3.2	CROPWAT Computer Program	37
3.2.1	Required input data	37
3.2.2	Model Output	40
3.2.3	Calculation of Irrigation Requirement	40
3.3	Methods of Analyzing Rainfall and Droughts	41
3.3.1.	Distribution of Rainfall	41
3.3.2.	Probability of occurrence of rainfall	42
3.3.3	Rainfall frequency	43
3.4	Program FIRST	44
3.4.1	Calculating of Probability of Rainfall	44
3.4.2	Frequency and probability of dry and wet spells	45
3.4.3	Forward accumulation of certain amount of rainfall at a desired probability	45
3.5	Mapping	46
	Part II -Results and Discussion	
3.6	Introduction	47
3.7	Materials and Methods	48
3.7.1	Rainfall	48
3.7.2.	Evaporation	50
3.7.3	Cróp and Plant data	50
3.8.	Identification of dry periods.	51
3.8.1	Monthly minimum rainfall totals of 75 mm	51
3.8.2.	Probability of 10 mm rainfall in a week	52
3.8.3	Weekly MAI	54
3.8.4	Assessment of Dry weeks	56

3.9	Optimum crop commencement periods	59
3.9.1.	Crop Commencement time based on Water Balance Method – CROPWAT program	60
3.9.2	Crop commencement time based on 100 mm of forward rainfall accumulation method	63
3.9.3	Commencement time based on initial probability of 10 mm weekly rainfall	64
3.9.4	Commencement time based on Weekly Moisture Availability Indices (MAI)	65
3.9.5	Crop commencement time based on the survey of farmers	66
3.9.6	Comparison of crop commencement time obtained from different methods	67
3.10	Irrigation need for crops with optimum planting date	72
3.11	Summary	75

Chapter 4

Part I - Methodology

4.	Experimental setup to determine a suitable irrigation system	78
4.1	Location of the experimental area	81
4.2.	Determination of Physical properties of the soil	82
4.2.1.	Bulk Density	82
4.2.2	True Density	82
4.2.3.	Porosity	83
4.2.4.	Aggregate Analysis of the soil	83
4.2.5	Field Capacity	84
4.2.6	Permanent Wilting Point	. 84
4.2.7	Infiltration rate	85
4.3	Selection of suitable subsurface irrigators	86
4.3.1	Design of clay pots	86
4.3.2.	Previous studies on Determination of Wetting Pattern	88
4.3.3	Experimental setup for determining wetting pattern from clay pots	89
4.3.4	Design of clay emitters for trickle irrigation system	92

Page	No	
------	----	--

4.4.	Design of auto irrigation systems	93
4.4.1.	Subsurface pot irrigation network <i>I</i>	93
4.4.2	Subsurface Pot Irrigation Network <i>II</i>	95
4.4.3	Subsurface Trickle Irrigation System	97
	Part II - Results and Discussion	

4.5	Selection of a suitable sub irrigator based on the wetting pattern	99
4.6	Soil Moisture Distribution with Depth of Soil from Round shaped pots and designed emitters	104
4.7	Rate of water loss by pots and emitters with time	105
4.8	Assessment of the subsurface pot irrigation network I	109
4.8.1	Irrigation water requirement	109
4.8.2.	Growth and development of tomatoes under different irrigation systems	112
4.8.3	Yield of tomatoes under different irrigation systems.	113
4.9	Comparative study of the subsurface pot irrigation and the trickle irrigation systems	114
4.9.1	Irrigation water consumption by curry chilies	114
4.9.2	Growth and Development of the crop	117
4.9.3	Development of roots	118
4.9.4.	Yield of crop	119
4.9.5	Relationship between pan evaporation and water diffusion through selected irrigation systems.	121
4.10	Summary	123

Chapter 5

5.1	Introduction	126
5.2	Determination of roof runoff coefficient from different roof tops	128
5.2.1	Water collection from the existing roofs	129
5.2.2 .	Water collection from experimentally designed roofs	129
5.2.3	Estimation of runoff Coefficient of different types of roofs	131
5.3	Methods of designing micro level rainwater harvesting tanks for home garden irrigation	133

		Page No
5.3.1	Storage capacity	133
5.3.2	Rationing method	136
5.2.3	Rapid depletion Method	137
5.2.4	Mass Curve Method	138
5.2.5	Behaviour Analysis .	139
5.3	Determination of Optimum Tank Capacity	141
5.4	Summary	151
(Chapter 6	、
6.1	Summary.	152
6.2	Conclusions	154
6.2.1	Agro-climatological classification of Matara region	154
6.2.2	Number of dry weeks in an annual cycle	155
6.2.3	Crop Commencement Time	156
6.2.4	Irrigation system	159
6.2.5	Roof Water Tank	159
6.3	RECOMMENDATIONS	159
6.3.1	Identification of Dry Weeks	159
6.3.2	Identification of Crop Commencement Time	160
6.3.3	Irrigation System	160
6.3.4	Roof Water Tanks	. 160
7.	References	161

-

180

8. Appendices

,

.

Page	No.
------	-----

.

	Chapter 1	
Fig.1.1:	Location of Matara District	4
Fig.1.2:	Selected stations in Matara District	5
Fig.1.3:	Soil Map of Matara District	5

Part II

Fig.3.1:	Annual distribution of dry weeks in Matara District based on receiving 10 mm weekly rain less than 75% probability.	57
Fig.3.2:	Annual distribution of dry weeks in Matara District based on Weekly Moisture Availability Index less than 0.34.	57
Fig:3.3	Water requirement for curry chilies in different stations for <i>Yala</i> season with the change of planting date when calculated using CROPWAT program	60
Fig.3.4:	Water requirement of tomatoes in different stations for <i>Yala</i> season with the change of planting date when calculated using CROPWAT program.	61
Fig:3.5	Water requirement for curry chilies in different stations for <i>Maha</i> season with the change of planting date when calculated using CROPWAT program.	62
Fig.3.6:	Water requirement for tomatoes in different stations for <i>Maha</i> season with changing of planting week when calculated using CROPWAT program.	62
Fig:3.7	Crop onset time of selected locations of Matara District for <i>Yala</i> Season	68
Fig:3.8	Crop onset time of selected locations of Matara District for <i>Maha</i> Season	68
Fig.3.9:	Commanding area for crop commencement time in each region calculated by CROPWAT method for <i>Yala</i> season	71
Fig.3.10:	Commanding area for crop commencement time in each region calculated by CROPWAT method for <i>Maha</i> season	71

....

.

Chapter 4

Part I

Fig.4.1:	Shapes of the selected pots	87
Fig.4.2:	Arrangement of sand box experiment	90
Fig.4.3:	Wetting pattern of soil when pot was placed in Sand Box	90
Fig.4.4:	Arrangement of field experiment	91
Fig.4.5:	Field Experiment	91
Fig.4.6:	Designed emitter for trickle irrigation system	92
Fig.4.7:	Wetting pattern of soil when emitters were placed in sand box (Upside view)	93
Fig.4.8:	Network of Subsurface Pot Irrigation Network I	94
Fig.4.9: A	Appearance of Subsurface pot irrigation system <i>I</i>	95
Fig.4.10:	Network of Subsurface Pot Irrigation Network II	96
Fig.4.11: A	Appearance of Subsurface pot irrigation system II	97
Fig.4.12:	Network of Subsurface Drip Irrigation System	98
Fig.4.13: A	Appearance of Drip Irrigation System	98
Pa	rt II	

Fig.4.14:	Lateral water movement under field conditions	100
Fig.4.15:	Lateral water movement in sand media	100
Fig.4.16:	Downward water movement under field conditions	101
Fig.4.17:	Downward water movement In Sand media	101
Fig.4.18:	Wetting pattern of soil under different shapes of pots and designed conical shaped emitter	102

.

•

Fig 4.20:	Depth distribution of moisture in sand media and under field conditions by designed emitter after 18 days period	105
Fig 4.21:	Rate of water loss with the time by pots under soil without plants	106
Fig 4.22:	Rate of water loss with the time by emitters under soil without plants	106
Fig 4.23:	Fitting the calculated curve for pots with an actual data set.	107
Fig 4.24:	Fitting the calculated curve for emitters with an actual data set.	107
Fig. 4.25:	Calculated value Vs Actual value for clay pots	108
Fig. 4.26:	Calculated value Vs Actual value for emitters	108
Fig. 4.27:	Plant height under different irrigation systems	112
Fig.4.28:	Total Yield per plant of Tomato under different irrigation systems	113
Fig.4.29:	Number of Fruits and Average Weight per fruit	113
Fig.4.30:	Plant height under different irrigation systems during three selected seasons.	117
Fig 4.31:	Development of root system of plants grown under different irrigation systems during dry seasons.	119
Fig 4.32:	Cumulative yield of curry chilies under different irrigation Systems	120
Fig 4.33:	Cumulative water consumption by crops under different irrigation systems with Cumulative pan evaporation and rainfall for the year.	121
Fig.4.34:	Relationship between irrigation need under pot irrigation and pan evaporation	122
Fig.4.35:	Relationship between irrigation need under trickle irrigation and pan evaporation	122

Chapter	5
---------	---

Fiz 5.1:	Water collection from existing roof	129
Fig 5.2:	Water harvesting from e primentally designed roofs	130
Fig.5.3:	Roof water harvesting taaks	130
Fig 5.4:	Relationship between rainfull and runoff from different types of roof tops	131
Fig 5.5:	Calculated runoff value Vs Actual runoff value for different roofing materials.	133
Fig 5.6:	Schematic representation of Rationing Method	136
Fig.5.7:	Schematic representation of Rapid Depletion method	137
Fig 5.8:	Schematic representation of Mass curve method	139
Fig 5.9:	Schematic representation of Behaviour diagram	. 141
Fig.5.10:	Behavoiur diagram for initial tank capacity of 10 m ³ under pot irrigation	143
Fig.5.11:	Behavoiur diagram for initial tank capacity of 15 m ³ under pot irrigation	143
Fig.5.12:	Behavoiur diagram for initial tank capacity of 20 m ³ under pot irrigation	144
Fig.5.13:	Behavoiur diagram for initial tank capacity of 25 m ³ under pot irrigation	144
Fig.5.14:	Behavoiur diagram for initial tank capacity of 30 m ³ under pot irrigation	145
Fig.5.15:	Behavoiur diagram for initial tank capacity of 75 m ³ under pot irrigation	145
Fig.5.16:	Behavoiur diagram for initial tank capacity of 1 m ³ under drip irrigation	146
Fig.5.17:	Behavoiur diagram for initial tank capacity of 2 m ³ under drip irrigation	146

LALE INU.	P	age	No.
-----------	---	-----	-----

Fig.5.18:	Behavoiur diagram for initial tank capacity of 4 m ³ under drip irrigation	147
Fig.5.19:	Behavoiur diagram for initial tank capacity of 5 m ³ under drip irrigation	147
Fig.5.20:	Behavoiur diagram for initial tank capacity of 8 m ³ under drip irrigation	148
Fig.5.21:	Behavoiur diagram for initial tank capacity of 8 m ³ under drip irrigation	148
Fig.5.22:	Behavoiur diagram for initial tank capacity of 18 m ³ under drip irrigation	149
Fig 5.23:	Relationship between the reliability level and the tank capacity under pot irrigation	149
Fig 5.24:	Relationship between the reliability level and the tank capacity under drip irrigation	150

Chapter 2	
Table 2.1: Definitions of drought based on rainfall	30
Chapter 3	
Table 3.1 : Rainfall statistics and locations of selected regions of Matara district	49
Table 3.2 : Crop data input	50
Table 3.3 : Average monthly rainfall at study regions of Matara District	52
Table 3.4 : Probability of 10 mm rainfall in each standard weekfor study regions	53
Table 3.5 : MAI values at study regions	55
Table 3.6 : Number of dry weeks in different locations	56
Table 3.7 : Percentage of dry weeks per year in the locations of Matara district.	58
Table 3.8 :The calendar week which receives 100 mm of rainfallaccumulation at 75% probability in Yala and Maha seasons	63
Table 3.9 : Crop commencement week based on initial probabilityof rainfall at 10 mm limit	64
Table 3.10: Onset time of vegetable crops based on weekly MAI at selectedStations	65
Table 3.11: Crop commencement time based on farmer survey	66
Table 3.12 : Irrigation need for crops with optimum planting date	72
Table 3.13 : 75% expectancy of annual rainfall and irrigation waterrequirement of vegetables and curry chilies duringthe Yala season	74
Table 3.14 : 75% expectancy of annual rainfall and irrigation water requirement of vegetables and curry chilies during the Maha season	74
Table 3.15: Proposed Agro-ecological regions based on 75% expectancyof annual rainfall for selected stations	75

Chapter 4	
Table 4.1: Volume of the wetted soil and water loss through the potsdepending on their shape (after 12 days period)	103
Table 4.2: Total water balance analysis in each growth stage of tomato	110
Table 4.3: Experimental and CROPWAT simulated irrigation requirementfortomato plants	111
Table 4.4: Irrigation water consumption by curry chilies underthree different irrigation systems.	115
Table 4.5: Rainfall, irrigation and water need of crop under different irrigation systems during three seasons	116
Table 4.6: Reported yield and estimated yield under three irrigationsystemsduring three selected seasons.	121
Chapter 5	
Table.5.1: Roof water tank capacities of different countries.	134
Table 5.2: Tank capacity and number of weeks failed under potand drip irrigation systemswith different reliability level	150